Mercurial > repos > public > sbplib
comparison +scheme/Laplace1d.m @ 1072:6468a5f6ec79 feature/grids/LaplaceSquared
Merge with default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 12 Feb 2019 17:12:42 +0100 |
parents | 0c504a21432d |
children | ae4b090b5299 |
comparison
equal
deleted
inserted
replaced
1071:92cb03e64ca4 | 1072:6468a5f6ec79 |
---|---|
1 classdef Laplace1d < scheme.Scheme | |
2 properties | |
3 grid | |
4 order % Order accuracy for the approximation | |
5 | |
6 D % non-stabalized scheme operator | |
7 H % Discrete norm | |
8 M % Derivative norm | |
9 a | |
10 | |
11 D2 | |
12 Hi | |
13 e_l | |
14 e_r | |
15 d_l | |
16 d_r | |
17 gamm | |
18 end | |
19 | |
20 methods | |
21 function obj = Laplace1d(grid, order, a) | |
22 default_arg('a', 1); | |
23 | |
24 assertType(grid, 'grid.Cartesian'); | |
25 | |
26 ops = sbp.D2Standard(grid.size(), grid.lim{1}, order); | |
27 | |
28 obj.D2 = sparse(ops.D2); | |
29 obj.H = sparse(ops.H); | |
30 obj.Hi = sparse(ops.HI); | |
31 obj.M = sparse(ops.M); | |
32 obj.e_l = sparse(ops.e_l); | |
33 obj.e_r = sparse(ops.e_r); | |
34 obj.d_l = -sparse(ops.d1_l); | |
35 obj.d_r = sparse(ops.d1_r); | |
36 | |
37 | |
38 obj.grid = grid; | |
39 obj.order = order; | |
40 | |
41 obj.a = a; | |
42 obj.D = a*obj.D2; | |
43 | |
44 obj.gamm = grid.h*ops.borrowing.M.S; | |
45 end | |
46 | |
47 | |
48 % Closure functions return the opertors applied to the own doamin to close the boundary | |
49 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
50 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
51 % type is a string specifying the type of boundary condition if there are several. | |
52 % data is a function returning the data that should be applied at the boundary. | |
53 % neighbour_scheme is an instance of Scheme that should be interfaced to. | |
54 % neighbour_boundary is a string specifying which boundary to interface to. | |
55 function [closure, penalty] = boundary_condition(obj,boundary,type,data) | |
56 default_arg('type','neumann'); | |
57 default_arg('data',0); | |
58 | |
59 e = obj.getBoundaryOperator('e', boundary); | |
60 d = obj.getBoundaryOperator('d', boundary); | |
61 s = obj.getBoundarySign(boundary); | |
62 | |
63 switch type | |
64 % Dirichlet boundary condition | |
65 case {'D','dirichlet'} | |
66 tuning = 1.1; | |
67 tau1 = -tuning/obj.gamm; | |
68 tau2 = 1; | |
69 | |
70 tau = tau1*e + tau2*d; | |
71 | |
72 closure = obj.a*obj.Hi*tau*e'; | |
73 penalty = obj.a*obj.Hi*tau; | |
74 | |
75 % Neumann boundary condition | |
76 case {'N','neumann'} | |
77 tau = -e; | |
78 | |
79 closure = obj.a*obj.Hi*tau*d'; | |
80 penalty = -obj.a*obj.Hi*tau; | |
81 | |
82 % Unknown, boundary condition | |
83 otherwise | |
84 error('No such boundary condition: type = %s',type); | |
85 end | |
86 end | |
87 | |
88 function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) | |
89 % u denotes the solution in the own domain | |
90 % v denotes the solution in the neighbour domain | |
91 e_u = obj.getBoundaryOperator('e', boundary); | |
92 d_u = obj.getBoundaryOperator('d', boundary); | |
93 s_u = obj.getBoundarySign(boundary); | |
94 | |
95 e_v = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); | |
96 d_v = neighbour_scheme.getBoundaryOperator('d', neighbour_boundary); | |
97 s_v = neighbour_scheme.getBoundarySign(neighbour_boundary); | |
98 | |
99 a_u = obj.a; | |
100 a_v = neighbour_scheme.a; | |
101 | |
102 gamm_u = obj.gamm; | |
103 gamm_v = neighbour_scheme.gamm; | |
104 | |
105 tuning = 1.1; | |
106 | |
107 tau1 = -(a_u/gamm_u + a_v/gamm_v) * tuning; | |
108 tau2 = 1/2*a_u; | |
109 sig1 = -1/2; | |
110 sig2 = 0; | |
111 | |
112 tau = tau1*e_u + tau2*d_u; | |
113 sig = sig1*e_u + sig2*d_u; | |
114 | |
115 closure = obj.Hi*( tau*e_u' + sig*a_u*d_u'); | |
116 penalty = obj.Hi*(-tau*e_v' + sig*a_v*d_v'); | |
117 end | |
118 | |
119 % Returns the boundary operator op for the boundary specified by the string boundary. | |
120 % op -- string | |
121 % boundary -- string | |
122 function o = getBoundaryOperator(obj, op, boundary) | |
123 assertIsMember(op, {'e', 'd'}) | |
124 assertIsMember(boundary, {'l', 'r'}) | |
125 | |
126 o = obj.([op, '_', boundary]) | |
127 end | |
128 | |
129 % Returns square boundary quadrature matrix, of dimension | |
130 % corresponding to the number of boundary points | |
131 % | |
132 % boundary -- string | |
133 % Note: for 1d diffOps, the boundary quadrature is the scalar 1. | |
134 function H_b = getBoundaryQuadrature(obj, boundary) | |
135 assertIsMember(boundary, {'l', 'r'}) | |
136 | |
137 H_b = 1; | |
138 end | |
139 | |
140 % Returns the boundary sign. The right boundary is considered the positive boundary | |
141 % boundary -- string | |
142 function s = getBoundarySign(obj, boundary) | |
143 assertIsMember(boundary, {'l', 'r'}) | |
144 | |
145 switch boundary | |
146 case {'r'} | |
147 s = 1; | |
148 case {'l'} | |
149 s = -1; | |
150 end | |
151 end | |
152 | |
153 function N = size(obj) | |
154 N = obj.grid.size(); | |
155 end | |
156 | |
157 end | |
158 end |