Mercurial > repos > public > sbplib
view +scheme/Laplace1d.m @ 1079:ae4b090b5299
Bugfix missing semi-colon in Laplace1d.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Wed, 20 Feb 2019 16:14:15 -0800 |
parents | 0c504a21432d |
children | a20fc67e9ac0 |
line wrap: on
line source
classdef Laplace1d < scheme.Scheme properties grid order % Order accuracy for the approximation D % non-stabalized scheme operator H % Discrete norm M % Derivative norm a D2 Hi e_l e_r d_l d_r gamm end methods function obj = Laplace1d(grid, order, a) default_arg('a', 1); assertType(grid, 'grid.Cartesian'); ops = sbp.D2Standard(grid.size(), grid.lim{1}, order); obj.D2 = sparse(ops.D2); obj.H = sparse(ops.H); obj.Hi = sparse(ops.HI); obj.M = sparse(ops.M); obj.e_l = sparse(ops.e_l); obj.e_r = sparse(ops.e_r); obj.d_l = -sparse(ops.d1_l); obj.d_r = sparse(ops.d1_r); obj.grid = grid; obj.order = order; obj.a = a; obj.D = a*obj.D2; obj.gamm = grid.h*ops.borrowing.M.S; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','neumann'); default_arg('data',0); e = obj.getBoundaryOperator('e', boundary); d = obj.getBoundaryOperator('d', boundary); s = obj.getBoundarySign(boundary); switch type % Dirichlet boundary condition case {'D','dirichlet'} tuning = 1.1; tau1 = -tuning/obj.gamm; tau2 = 1; tau = tau1*e + tau2*d; closure = obj.a*obj.Hi*tau*e'; penalty = obj.a*obj.Hi*tau; % Neumann boundary condition case {'N','neumann'} tau = -e; closure = obj.a*obj.Hi*tau*d'; penalty = -obj.a*obj.Hi*tau; % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain e_u = obj.getBoundaryOperator('e', boundary); d_u = obj.getBoundaryOperator('d', boundary); s_u = obj.getBoundarySign(boundary); e_v = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); d_v = neighbour_scheme.getBoundaryOperator('d', neighbour_boundary); s_v = neighbour_scheme.getBoundarySign(neighbour_boundary); a_u = obj.a; a_v = neighbour_scheme.a; gamm_u = obj.gamm; gamm_v = neighbour_scheme.gamm; tuning = 1.1; tau1 = -(a_u/gamm_u + a_v/gamm_v) * tuning; tau2 = 1/2*a_u; sig1 = -1/2; sig2 = 0; tau = tau1*e_u + tau2*d_u; sig = sig1*e_u + sig2*d_u; closure = obj.Hi*( tau*e_u' + sig*a_u*d_u'); penalty = obj.Hi*(-tau*e_v' + sig*a_v*d_v'); end % Returns the boundary operator op for the boundary specified by the string boundary. % op -- string % boundary -- string function o = getBoundaryOperator(obj, op, boundary) assertIsMember(op, {'e', 'd'}) assertIsMember(boundary, {'l', 'r'}) o = obj.([op, '_', boundary]); end % Returns square boundary quadrature matrix, of dimension % corresponding to the number of boundary points % % boundary -- string % Note: for 1d diffOps, the boundary quadrature is the scalar 1. function H_b = getBoundaryQuadrature(obj, boundary) assertIsMember(boundary, {'l', 'r'}) H_b = 1; end % Returns the boundary sign. The right boundary is considered the positive boundary % boundary -- string function s = getBoundarySign(obj, boundary) assertIsMember(boundary, {'l', 'r'}) switch boundary case {'r'} s = 1; case {'l'} s = -1; end end function N = size(obj) N = obj.grid.size(); end end end