Mercurial > repos > public > sbplib_julia
changeset 545:ff412b29db31 feature/quadrature_as_outer_product
Merge with default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 26 Nov 2020 21:56:33 +0100 |
parents | 576c6d1acc28 (current diff) 013ca4892540 (diff) |
children | 09ae5b519b4c |
files | |
diffstat | 3 files changed, 203 insertions(+), 60 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Grids/Grids.jl Sat Nov 07 13:31:55 2020 +0100 +++ b/src/Grids/Grids.jl Thu Nov 26 21:56:33 2020 +0100 @@ -7,7 +7,7 @@ abstract type BoundaryIdentifier end struct CartesianBoundary{Dim, R<:Region} <: BoundaryIdentifier end dim(::CartesianBoundary{Dim, R}) where {Dim, R} = Dim -region(::CartesianBoundary{Dim, R}) where {Dim, R} = R +region(::CartesianBoundary{Dim, R}) where {Dim, R} = R #TODO: Should return R() export dim, region
--- a/src/LazyTensors/lazy_tensor_operations.jl Sat Nov 07 13:31:55 2020 +0100 +++ b/src/LazyTensors/lazy_tensor_operations.jl Thu Nov 26 21:56:33 2020 +0100 @@ -240,8 +240,6 @@ # Resolve ambiguity between the two previous methods InflatedTensorMapping(I1::IdentityMapping{T}, I2::IdentityMapping{T}) where T = InflatedTensorMapping(I1,I2,IdentityMapping{T}()) -# TODO: Implement syntax and constructors for products of different combinations of InflatedTensorMapping and IdentityMapping - # TODO: Implement some pretty printing in terms of ⊗. E.g InflatedTensorMapping(I(3),B,I(2)) -> I(3)⊗B⊗I(2) function range_size(itm::InflatedTensorMapping) @@ -261,30 +259,56 @@ end function apply(itm::InflatedTensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg{Any,R}) where {T,R,D} - view_index, inner_index = split_index(itm, I...) + dim_before = range_dim(itm.before) + dim_domain = domain_dim(itm.tm) + dim_range = range_dim(itm.tm) + dim_after = range_dim(itm.after) + + view_index, inner_index = split_index(Val(dim_before), Val(dim_domain), Val(dim_range), Val(dim_after), I...) v_inner = view(v, view_index...) return apply(itm.tm, v_inner, inner_index...) end +function apply_transpose(itm::InflatedTensorMapping{T,R,D}, v::AbstractArray{T,R}, I::Vararg{Any,D}) where {T,R,D} + dim_before = range_dim(itm.before) + dim_domain = domain_dim(itm.tm) + dim_range = range_dim(itm.tm) + dim_after = range_dim(itm.after) + + view_index, inner_index = split_index(Val(dim_before), Val(dim_range), Val(dim_domain), Val(dim_after), I...) + + v_inner = view(v, view_index...) + return apply_transpose(itm.tm, v_inner, inner_index...) +end + """ - split_index(...) + split_index(::Val{dim_before}, ::Val{dim_view}, ::Val{dim_index}, ::Val{dim_after}, I...) -Splits the multi-index into two parts. One part for the view that the inner TensorMapping acts on, and one part for indexing the result +Splits the multi-index `I` into two parts. One part which is expected to be +used as a view, and one which is expected to be used as an index. Eg. ``` -(1,2,3,4) -> (1,:,:,4), (2,3) +split_index(Val(1),Val(3),Val(2),Val(1),(1,2,3,4)) -> (1,:,:,:,4), (2,3) ``` + +`dim_view` controls how many colons are in the view, and `dim_index` controls +how many elements are extracted from the middle. +`dim_before` and `dim_after` decides the length of the index parts before and after the colons in the view index. + +Arguments should satisfy `length(I) == dim_before+B_domain+dim_after`. + +The returned values satisfy + * `length(view_index) == dim_before + dim_view + dim_after` + * `length(I_middle) == dim_index` """ -function split_index(itm::InflatedTensorMapping{T,R,D}, I::Vararg{Any,R}) where {T,R,D} - I_before = slice_tuple(I, Val(1), Val(range_dim(itm.before))) - I_after = slice_tuple(I, Val(R-range_dim(itm.after)+1), Val(R)) +function split_index(::Val{dim_before}, ::Val{dim_view}, ::Val{dim_index}, ::Val{dim_after}, I...) where {dim_before,dim_view, dim_index,dim_after} + I_before, I_middle, I_after = split_tuple(I, Val(dim_before), Val(dim_index)) - view_index = (I_before..., ntuple((i)->:,domain_dim(itm.tm))..., I_after...) - inner_index = slice_tuple(I, Val(range_dim(itm.before)+1), Val(R-range_dim(itm.after))) + view_index = (I_before..., ntuple((i)->:, dim_view)..., I_after...) - return (view_index, inner_index) + return view_index, I_middle end # TODO: Can this be replaced by something more elegant while still being type stable? 2020-10-21 @@ -302,6 +326,32 @@ end """ + split_tuple(t::Tuple{...}, ::Val{M}) where {N,M} + +Split the tuple `t` into two parts. the first part is `M` long. +E.g +``` +split_tuple((1,2,3,4),Val(3)) -> (1,2,3), (4,) +``` +""" +function split_tuple(t::NTuple{N},::Val{M}) where {N,M} + return slice_tuple(t,Val(1), Val(M)), slice_tuple(t,Val(M+1), Val(N)) +end + +""" + split_tuple(t::Tuple{...},::Val{M},::Val{K}) where {N,M,K} + +Same as `split_tuple(t::NTuple{N},::Val{M})` but splits the tuple in three parts. With the first +two parts having lenght `M` and `K`. +""" +function split_tuple(t::NTuple{N},::Val{M},::Val{K}) where {N,M,K} + p1, tail = split_tuple(t, Val(M)) + p2, p3 = split_tuple(tail, Val(K)) + return p1,p2,p3 +end + + +""" flatten_tuple(t) Takes a nested tuple and flattens the whole structure
--- a/test/testLazyTensors.jl Sat Nov 07 13:31:55 2020 +0100 +++ b/test/testLazyTensors.jl Thu Nov 26 21:56:33 2020 +0100 @@ -340,61 +340,115 @@ B = LazyLinearMap(B̃,(1,2),(3,)) C = LazyLinearMap(C̃,(1,),(2,3)) - @test InflatedTensorMapping(I(3,2), A, I(4)) isa TensorMapping{Float64, 4, 4} - @test InflatedTensorMapping(I(3,2), B, I(4)) isa TensorMapping{Float64, 5, 4} - @test InflatedTensorMapping(I(3), C, I(2,3)) isa TensorMapping{Float64, 4, 5} - @test InflatedTensorMapping(C, I(2,3)) isa TensorMapping{Float64, 3, 4} - @test InflatedTensorMapping(I(3), C) isa TensorMapping{Float64, 2, 3} - @test InflatedTensorMapping(I(3), I(2,3)) isa TensorMapping{Float64, 3, 3} - - @test range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) - @test domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) - - @test range_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,4,2,4) - @test domain_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,3,4) - - @test range_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,4,2,3) - @test domain_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,2,3,2,3) - - @inferred range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) - @inferred domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) + @testset "Constructors" begin + @test InflatedTensorMapping(I(3,2), A, I(4)) isa TensorMapping{Float64, 4, 4} + @test InflatedTensorMapping(I(3,2), B, I(4)) isa TensorMapping{Float64, 5, 4} + @test InflatedTensorMapping(I(3), C, I(2,3)) isa TensorMapping{Float64, 4, 5} + @test InflatedTensorMapping(C, I(2,3)) isa TensorMapping{Float64, 3, 4} + @test InflatedTensorMapping(I(3), C) isa TensorMapping{Float64, 2, 3} + @test InflatedTensorMapping(I(3), I(2,3)) isa TensorMapping{Float64, 3, 3} + end - # Test InflatedTensorMapping mapping w. before and after - tm = InflatedTensorMapping(I(3,2), A, I(4)) - v = rand(domain_size(tm)...) - @tullio IAIv[a,b,c,d] := Ã[c,i]*v[a,b,i,d] - @test tm*v ≈ IAIv rtol=1e-14 - @inferred LazyTensors.split_index(tm,1,1,1,1) + @testset "Range and domain size" begin + @test range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) + @test domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) - # Test InflatedTensorMapping mapping w. before - tm = InflatedTensorMapping(I(3,2), A) - v = rand(domain_size(tm)...) - @tullio IAIv[a,b,c] := Ã[c,i]*v[a,b,i] - @test tm*v ≈ IAIv rtol=1e-14 - @inferred LazyTensors.split_index(tm,1,1,1) + @test range_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,4,2,4) + @test domain_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,3,4) - # Test InflatedTensorMapping mapping w. after - tm = InflatedTensorMapping(A,I(4)) - v = rand(domain_size(tm)...) - @tullio IAIv[c,d] := Ã[c,i]*v[i,d] - @test tm*v ≈ IAIv rtol=1e-14 - @inferred LazyTensors.split_index(tm,1,1) + @test range_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,4,2,3) + @test domain_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,2,3,2,3) - struct ScalingOperator{T,D} <: TensorMapping{T,D,D} - λ::T - size::NTuple{D,Int} + @inferred range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) + @inferred domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) end - LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Index,D}) where {T,D} = m.λ*v[I] - LazyTensors.range_size(m::ScalingOperator) = m.size - LazyTensors.domain_size(m::ScalingOperator) = m.size + @testset "Application" begin + # Testing regular application and transposed application with inflation "before", "after" and "before and after". + # The inflated tensor mappings are chosen to preserve, reduce and increase the dimension of the result compared to the input. + tests = [ + ( + InflatedTensorMapping(I(3,2), A, I(4)), + (v-> @tullio res[a,b,c,d] := Ã[c,i]*v[a,b,i,d]), # Expected result of apply + (v-> @tullio res[a,b,c,d] := Ã[i,c]*v[a,b,i,d]), # Expected result of apply_transpose + ), + ( + InflatedTensorMapping(I(3,2), B, I(4)), + (v-> @tullio res[a,b,c,d,e] := B̃[c,d,i]*v[a,b,i,e]), + (v-> @tullio res[a,b,c,d] := B̃[i,j,c]*v[a,b,i,j,d]), + ), + ( + InflatedTensorMapping(I(3,2), C, I(4)), + (v-> @tullio res[a,b,c,d] := C̃[c,i,j]*v[a,b,i,j,d]), + (v-> @tullio res[a,b,c,d,e] := C̃[i,c,d]*v[a,b,i,e]), + ), + ( + InflatedTensorMapping(I(3,2), A), + (v-> @tullio res[a,b,c] := Ã[c,i]*v[a,b,i]), + (v-> @tullio res[a,b,c] := Ã[i,c]*v[a,b,i]), + ), + ( + InflatedTensorMapping(I(3,2), B), + (v-> @tullio res[a,b,c,d] := B̃[c,d,i]*v[a,b,i]), + (v-> @tullio res[a,b,c] := B̃[i,j,c]*v[a,b,i,j]), + ), + ( + InflatedTensorMapping(I(3,2), C), + (v-> @tullio res[a,b,c] := C̃[c,i,j]*v[a,b,i,j]), + (v-> @tullio res[a,b,c,d] := C̃[i,c,d]*v[a,b,i]), + ), + ( + InflatedTensorMapping(A,I(4)), + (v-> @tullio res[a,b] := Ã[a,i]*v[i,b]), + (v-> @tullio res[a,b] := Ã[i,a]*v[i,b]), + ), + ( + InflatedTensorMapping(B,I(4)), + (v-> @tullio res[a,b,c] := B̃[a,b,i]*v[i,c]), + (v-> @tullio res[a,b] := B̃[i,j,a]*v[i,j,b]), + ), + ( + InflatedTensorMapping(C,I(4)), + (v-> @tullio res[a,b] := C̃[a,i,j]*v[i,j,b]), + (v-> @tullio res[a,b,c] := C̃[i,a,b]*v[i,c]), + ), + ] - tm = InflatedTensorMapping(I(2,3),ScalingOperator(2.0, (3,2)),I(3,4)) - v = rand(domain_size(tm)...) + @testset "apply" begin + for i ∈ 1:length(tests) + tm = tests[i][1] + v = rand(domain_size(tm)...) + true_value = tests[i][2](v) + @test tm*v ≈ true_value rtol=1e-14 + end + end + + @testset "apply_transpose" begin + for i ∈ 1:length(tests) + tm = tests[i][1] + v = rand(range_size(tm)...) + true_value = tests[i][3](v) + @test tm'*v ≈ true_value rtol=1e-14 + end + end - @inferred LazyTensors.split_index(tm,1,2,3,2,2,4) - @inferred apply(tm,v,Index{Unknown}.((1,2,3,2,2,4))...) - @inferred (tm*v)[1,2,3,2,2,4] + @testset "Inference of application" begin + struct ScalingOperator{T,D} <: TensorMapping{T,D,D} + λ::T + size::NTuple{D,Int} + end + + LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Index,D}) where {T,D} = m.λ*v[I] + LazyTensors.range_size(m::ScalingOperator) = m.size + LazyTensors.domain_size(m::ScalingOperator) = m.size + + tm = InflatedTensorMapping(I(2,3),ScalingOperator(2.0, (3,2)),I(3,4)) + v = rand(domain_size(tm)...) + + @inferred apply(tm,v,Index{Unknown}.((1,2,3,2,2,4))...) + @inferred (tm*v)[1,2,3,2,2,4] + end + end @testset "InflatedTensorMapping of InflatedTensorMapping" begin A = ScalingOperator(2.0,(2,3)) @@ -405,7 +459,20 @@ @test InflatedTensorMapping(I(2), I(2), I(2)) isa InflatedTensorMapping # The constructor should always return its type. end +end +@testset "split_index" begin + @test LazyTensors.split_index(Val(2),Val(1),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,5,6),(3,4)) + @test LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,:,:,5,6),(3,4)) + @test LazyTensors.split_index(Val(3),Val(1),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,5,6),(4,)) + @test LazyTensors.split_index(Val(3),Val(2),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,:,5,6),(4,)) + @test LazyTensors.split_index(Val(1),Val(1),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,4,5,6),(2,3)) + @test LazyTensors.split_index(Val(1),Val(2),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,:,4,5,6),(2,3)) + + @test LazyTensors.split_index(Val(0),Val(1),Val(3),Val(3),1,2,3,4,5,6) == ((:,4,5,6),(1,2,3)) + @test LazyTensors.split_index(Val(3),Val(1),Val(3),Val(0),1,2,3,4,5,6) == ((1,2,3,:),(4,5,6)) + + @inferred LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,2,2,4) end @testset "slice_tuple" begin @@ -415,6 +482,32 @@ @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(4), Val(6)) == (4,5,6) end +@testset "split_tuple" begin + @testset "2 parts" begin + @test LazyTensors.split_tuple((),Val(0)) == ((),()) + @test LazyTensors.split_tuple((1,),Val(0)) == ((),(1,)) + @test LazyTensors.split_tuple((1,),Val(1)) == ((1,),()) + + @test LazyTensors.split_tuple((1,2,3,4),Val(0)) == ((),(1,2,3,4)) + @test LazyTensors.split_tuple((1,2,3,4),Val(1)) == ((1,),(2,3,4)) + @test LazyTensors.split_tuple((1,2,3,4),Val(2)) == ((1,2),(3,4)) + @test LazyTensors.split_tuple((1,2,3,4),Val(3)) == ((1,2,3),(4,)) + @test LazyTensors.split_tuple((1,2,3,4),Val(4)) == ((1,2,3,4),()) + + @inferred LazyTensors.split_tuple((1,2,3,4),Val(3)) + end + + @testset "3 parts" begin + @test LazyTensors.split_tuple((),Val(0),Val(0)) == ((),(),()) + @test LazyTensors.split_tuple((1,2,3),Val(1), Val(1)) == ((1,),(2,),(3,)) + + @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(1),Val(2)) == ((1,),(2,3),(4,5,6)) + @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2)) == ((1,2,3),(4,5),(6,)) + + @inferred LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2)) + end +end + @testset "flatten_tuple" begin @test LazyTensors.flatten_tuple((1,)) == (1,) @test LazyTensors.flatten_tuple((1,2,3,4,5,6)) == (1,2,3,4,5,6)