Mercurial > repos > public > sbplib_julia
changeset 546:09ae5b519b4c feature/quadrature_as_outer_product
Update documentation
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 27 Nov 2020 12:33:10 +0100 |
parents | ff412b29db31 |
children | 8ac1d0fcba41 |
files | src/SbpOperators/quadrature/diagonal_quadrature.jl |
diffstat | 1 files changed, 19 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/quadrature/diagonal_quadrature.jl Thu Nov 26 21:56:33 2020 +0100 +++ b/src/SbpOperators/quadrature/diagonal_quadrature.jl Fri Nov 27 12:33:10 2020 +0100 @@ -18,8 +18,10 @@ """ DiagonalQuadrature{T,M} <: TensorMapping{T,1,1} -Implements the one-dimensional diagonal quadrature operator as a `TensorMapping -TODO: Elaborate on properties +Implements the one-dimensional diagonal quadrature operator as a `TensorMapping` +The quadrature is defined by the quadrature interval length `h`, the quadrature +closure weights `closure` and the number of quadrature intervals `size`. The +interior stencil has the weight 1. """ struct DiagonalQuadrature{T,M} <: TensorMapping{T,1,1} h::T @@ -31,8 +33,8 @@ """ DiagonalQuadrature(g, quadrature_closure) -Constructs the `DiagonalQuadrature` defined by the `EquidistantGrid` `g` and -closure stencil `quadrature_closure`. +Constructs the `DiagonalQuadrature` `H` on the `EquidistantGrid` `g` with +`H.closure` specified by `quadrature_closure`. """ function DiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure) return DiagonalQuadrature(spacing(g)[1], quadrature_closure, size(g)) @@ -41,10 +43,11 @@ LazyTensors.range_size(H::DiagonalQuadrature) = H.size LazyTensors.domain_size(H::DiagonalQuadrature) = H.size -function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T - return @inbounds apply(H, v, I) -end - +""" + apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T +Implements the application `(H*v)[i]` an `Index{R}` where `R` is one of the regions +`Lower`,`Interior`,`Upper`,`Unknown`. +""" function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Lower}) where T return @inbounds H.h*H.closure[Int(I)]*v[Int(I)] end @@ -58,14 +61,18 @@ return @inbounds H.h*v[Int(I)] end -function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, index::Index{Unknown}) where T +function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Unknown}) where T N = length(v); - r = getregion(Int(index), closure_size(H), N) - i = Index(Int(index), r) + r = getregion(Int(I), closure_size(H), N) + i = Index(Int(I), r) return LazyTensors.apply(H, v, i) end -LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T = LazyTensors.apply(H,v,I) +""" + apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T +Implements the application (H'*v)[I]. The operator is self-adjoint. +""" +LazyTensors.apply_transpose(H::DiagonalQuadrature, v::AbstractVector, I) = LazyTensors.apply(H,v,I) """ closure_size(H)