Mercurial > repos > public > sbplib_julia
changeset 1673:f28c92ec843c refactor/grids/boundary_identifiers_1d
Address TODO in laplace.jl + minor fixes
author | Vidar Stiernström <vidar.stiernstrom@gmail.com> |
---|---|
date | Sun, 07 Jul 2024 15:19:33 -0700 |
parents | 3714a391545a |
children | 52c2e6dff228 |
files | src/SbpOperators/volumeops/laplace/laplace.jl |
diffstat | 1 files changed, 11 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Sun Jul 07 15:15:12 2024 -0700 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Sun Jul 07 15:19:33 2024 -0700 @@ -60,7 +60,7 @@ condition. `H_tuning` and `R_tuning` are used to specify the strength of the penalty. -See also: [`sat`](@ref),[`DirichletCondition`](@ref), [`positivity_decomposition`](@ref). +See also: [`sat`](@ref), [`DirichletCondition`](@ref), [`positivity_decomposition`](@ref). """ function sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning = 1., R_tuning = 1.) id = boundary(bc) @@ -69,7 +69,7 @@ Hᵧ = inner_product(boundary_grid(g, id), set) e = boundary_restriction(g, set, id) d = normal_derivative(g, set, id) - B = positivity_decomposition(Δ, g, bc; H_tuning, R_tuning) + B = positivity_decomposition(Δ, g, boundary(bc); H_tuning, R_tuning) penalty_tensor = H⁻¹∘(d' - B*e')∘Hᵧ return penalty_tensor, e end @@ -94,7 +94,7 @@ end """ - positivity_decomposition(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning, R_tuning) + positivity_decomposition(Δ::Laplace, g::Grid, b::BoundaryIdentifier; H_tuning, R_tuning) Constructs the scalar `B` such that `d' - 1/2*B*e'` is symmetric positive definite with respect to the boundary quadrature. Here `d` is the normal @@ -102,28 +102,26 @@ to form a symmetric and energy stable penalty for a Dirichlet condition. The parameters `H_tuning` and `R_tuning` are used to specify the strength of the penalty and must be greater than 1. For details we refer to -https://doi.org/10.1016/j.jcp.2020.109294 +<https://doi.org/10.1016/j.jcp.2020.109294> """ -function positivity_decomposition(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning, R_tuning) +function positivity_decomposition(Δ::Laplace, g::Grid, b::BoundaryIdentifier; H_tuning, R_tuning) @assert(H_tuning ≥ 1.) @assert(R_tuning ≥ 1.) - Nτ_H, τ_R = positivity_limits(Δ,g,bc) + Nτ_H, τ_R = positivity_limits(Δ,g,b) return H_tuning*Nτ_H + R_tuning*τ_R end -# TODO: We should consider implementing a proper BoundaryIdentifier for EquidistantGrid and then -# change bc::BoundaryCondition to id::BoundaryIdentifier -function positivity_limits(Δ::Laplace, g::EquidistantGrid, bc::DirichletCondition) +function positivity_limits(Δ::Laplace, g::EquidistantGrid, b::BoundaryIdentifier) h = spacing(g) θ_H = parse_scalar(Δ.stencil_set["H"]["closure"][1]) θ_R = parse_scalar(Δ.stencil_set["D2"]["positivity"]["theta_R"]) - τ_H = 1/(h*θ_H) - τ_R = 1/(h*θ_R) + τ_H = one(eltype(Δ))/(h*θ_H) + τ_R = one(eltype(Δ))/(h*θ_R) return τ_H, τ_R end -function positivity_limits(Δ::Laplace, g::TensorGrid, bc::DirichletCondition) - τ_H, τ_R = positivity_limits(Δ, g.grids[grid_id(boundary(bc))], bc) +function positivity_limits(Δ::Laplace, g::TensorGrid, b::BoundaryIdentifier) + τ_H, τ_R = positivity_limits(Δ, g.grids[grid_id(b)], b) return τ_H*ndims(g), τ_R end