changeset 1556:ec5e7926c37b

Merge refactor/equidistant_grid/signature
author Jonatan Werpers <jonatan@werpers.com>
date Sat, 13 Apr 2024 23:49:39 +0200
parents f1eacb923f45 (current diff) 7e165cc0eb68 (diff)
children 9113f437431d 81e97d3bec8c efe1fc4cb6b0
files
diffstat 17 files changed, 69 insertions(+), 69 deletions(-) [+]
line wrap: on
line diff
--- a/benchmark/benchmark_laplace.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/benchmark/benchmark_laplace.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -10,7 +10,7 @@
 
 function benchmark_const_coeff_1d(;N = 100, order = 4)
     stencil_set = read_stencil_set(operator_path; order=order)
-    g = equidistant_grid(N, 0., 1.)
+    g = equidistant_grid(0., 1., N)
     D = second_derivative(g, stencil_set)
     u = rand(size(g)...)
     u_xx = rand(size(g)...)
@@ -25,7 +25,7 @@
 
 function benchmark_var_coeff_1d(;N = 100, order = 4)
     stencil_set = read_stencil_set(operator_path; order=order)
-    g = equidistant_grid(N, 0., 1.)
+    g = equidistant_grid(0., 1., N)
     c = rand(size(g)...)
     c_lz = eval_on(g, x -> 0.5)
     D = second_derivative_variable(g, c, stencil_set)
@@ -49,7 +49,7 @@
 
 function benchmark_const_coeff_2d(;N = 100, order = 4)
     stencil_set = read_stencil_set(operator_path; order=order)
-    g = equidistant_grid((N,N), (0.,0.,),(1.,1.))
+    g = equidistant_grid((0.,0.,),(1.,1.), N, N)
     D = Laplace(g, stencil_set)
     u = rand(size(g)...)
     u_xx = rand(size(g)...)
@@ -71,7 +71,7 @@
 
 function benchmark_var_coeff_2d(;N = 100, order = 4)
     stencil_set = read_stencil_set(operator_path; order=order)
-    g = equidistant_grid((N,N), (0.,0.,),(1.,1.))
+    g = equidistant_grid((0.,0.,),(1.,1.), N, N)
     c = rand(size(g)...)
     c_lz = eval_on(g, x-> 0.5)
     D = second_derivative_variable(g, c, stencil_set, 1) + second_derivative_variable(g, c, stencil_set, 2)
@@ -217,4 +217,4 @@
     for I ∈ @view CartesianIndices(u)[end-clz_sz+1:end,end-clz_sz+1:end]
         u_xx[I] = tm[Index{Upper}(I[1]),Index{Upper}(I[2])]
     end
-end
\ No newline at end of file
+end
--- a/benchmark/benchmarks.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/benchmark/benchmarks.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -15,9 +15,9 @@
 ll(d) = ntuple(i->0., d)
 lu(d) = ntuple(i->1., d)
 
-g1 = equidistant_grid(sz(1)[1],ll(1)[1],lu(1)[1])
-g2 = equidistant_grid(sz(2),ll(2),lu(2))
-g3 = equidistant_grid(sz(3),ll(3),lu(3))
+g1 = equidistant_grid(ll(1)[1], lu(1)[1], sz(1)[1])
+g2 = equidistant_grid(ll(2), lu(2), sz(2))
+g3 = equidistant_grid(ll(3), lu(3), sz(3))
 
 v1 = rand(sz(1)...)
 v2 = rand(sz(2)...)
--- a/src/Grids/equidistant_grid.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/src/Grids/equidistant_grid.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -88,7 +88,7 @@
 
 
 """
-    equidistant_grid(size::Dims, limit_lower, limit_upper)
+    equidistant_grid(limit_lower, limit_upper, dims...)
 
 Construct an equidistant grid with corners at the coordinates `limit_lower` and
 `limit_upper`.
@@ -99,24 +99,24 @@
 of the grid are not allowed to be negative.
 
 The number of equispaced points in each coordinate direction are given
-by the tuple `size`.
+by the tuple `dims`.
 
-Note: If `limit_lower` and `limit_upper` are integers and `size` would allow a
+Note: If `limit_lower` and `limit_upper` are integers and `dims` would allow a
 completely integer grid, `equidistant_grid` will still return a floating point
 grid. This simplifies the implementation and avoids certain surprise
 behaviors.
 """
-function equidistant_grid(size::Dims, limit_lower, limit_upper)
-    gs = map(equidistant_grid, size, limit_lower, limit_upper)
+function equidistant_grid(limit_lower, limit_upper, dims::Vararg{Int})
+    gs = map(equidistant_grid, limit_lower, limit_upper, dims)
     return TensorGrid(gs...)
 end
 
 """
-    equidistant_grid(size::Int, limit_lower::T, limit_upper::T)
+    equidistant_grid(limit_lower::T, limit_upper::T, size::Int)
 
 Constructs a 1D equidistant grid.
 """
-function equidistant_grid(size::Int, limit_lower::T, limit_upper::T) where T
+function equidistant_grid(limit_lower::T, limit_upper::T, size::Int) where T
     if any(size .<= 0)
         throw(DomainError("size must be postive"))
     end
--- a/test/Grids/equidistant_grid_test.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/test/Grids/equidistant_grid_test.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -105,34 +105,34 @@
 
 
 @testset "equidistant_grid" begin
-    @test equidistant_grid(4,0.0,1.0) isa EquidistantGrid
-    @test equidistant_grid((4,3),(0.0,0.0),(8.0,5.0)) isa TensorGrid
+    @test equidistant_grid(0.0,1.0, 4) isa EquidistantGrid
+    @test equidistant_grid((0.0,0.0),(8.0,5.0), 4, 3) isa TensorGrid
 
     # constuctor
-    @test_throws DomainError equidistant_grid(0,0.0,1.0)
-    @test_throws DomainError equidistant_grid(1,1.0,1.0)
-    @test_throws DomainError equidistant_grid(1,1.0,-1.0)
+    @test_throws DomainError equidistant_grid(0.0, 1.0, 0)
+    @test_throws DomainError equidistant_grid(1.0, 1.0, 1)
+    @test_throws DomainError equidistant_grid(1.0, -1.0, 1)
 
-    @test_throws DomainError equidistant_grid((0,0),(0.0,0.0),(1.0,1.0))
-    @test_throws DomainError equidistant_grid((1,1),(1.0,1.0),(1.0,1.0))
-    @test_throws DomainError equidistant_grid((1,1),(1.0,1.0),(-1.0,-1.0))
+    @test_throws DomainError equidistant_grid((0.0,0.0),(1.0,1.0), 0, 0)
+    @test_throws DomainError equidistant_grid((1.0,1.0),(1.0,1.0), 1, 1)
+    @test_throws DomainError equidistant_grid((1.0,1.0),(-1.0,-1.0), 1, 1)
 
     @testset "Base" begin
-        @test eltype(equidistant_grid(4,0.0,1.0)) == Float64
-        @test eltype(equidistant_grid((4,3),(0,0),(1,3))) <: AbstractVector{Float64}
+        @test eltype(equidistant_grid(0.0, 1.0, 4)) == Float64
+        @test eltype(equidistant_grid((0,0),(1,3), 4, 3)) <: AbstractVector{Float64}
 
-        @test size(equidistant_grid(4,0.0,1.0)) == (4,)
-        @test size(equidistant_grid((5,3), (0.0,0.0), (2.0,1.0))) == (5,3)
+        @test size(equidistant_grid(0.0, 1.0, 4)) == (4,)
+        @test size(equidistant_grid((0.0,0.0), (2.0,1.0), 5, 3)) == (5,3)
 
-        @test size(equidistant_grid((5,3), (0.0,0.0), (2.0,1.0)),1) == 5
-        @test size(equidistant_grid((5,3), (0.0,0.0), (2.0,1.0)),2) == 3
+        @test size(equidistant_grid((0.0,0.0), (2.0,1.0), 5, 3), 1) == 5
+        @test size(equidistant_grid((0.0,0.0), (2.0,1.0), 5, 3), 2) == 3
 
-        @test ndims(equidistant_grid(4,0.0,1.0)) == 1
-        @test ndims(equidistant_grid((5,3), (0.0,0.0), (2.0,1.0))) == 2
+        @test ndims(equidistant_grid(0.0, 1.0, 4)) == 1
+        @test ndims(equidistant_grid((0.0,0.0), (2.0,1.0), 5, 3)) == 2
     end
 
     @testset "getindex" begin
-        g = equidistant_grid((5,3), (-1.0,0.0), (0.0,7.11))
+        g = equidistant_grid((-1.0,0.0), (0.0,7.11), 5, 3)
         gp = collect(g);
         p = [(-1.,0.)      (-1.,7.11/2)   (-1.,7.11);
             (-0.75,0.)    (-0.75,7.11/2) (-0.75,7.11);
--- a/test/Grids/grid_test.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/test/Grids/grid_test.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -47,7 +47,7 @@
     @test eval_on(EquidistantGrid(range(0,1,length=4)), x->2x) == 2 .* range(0,1,length=4)
 
 
-    g = equidistant_grid((5,3), (0.0,0.0), (2.0,1.0))
+    g = equidistant_grid((0.0,0.0), (2.0,1.0), 5, 3)
 
     @test eval_on(g, x̄ -> 0.) isa LazyArray
     @test eval_on(g, x̄ -> 0.) == fill(0., (5,3))
--- a/test/SbpOperators/boundaryops/boundary_restriction_test.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/test/SbpOperators/boundaryops/boundary_restriction_test.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -9,8 +9,8 @@
 @testset "boundary_restriction" begin
 	stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order = 4)
 	e_closure = parse_stencil(stencil_set["e"]["closure"])
-    g_1D = equidistant_grid(11, 0.0, 1.0)
-    g_2D = equidistant_grid((11,15), (0.0, 0.0), (1.0,1.0))
+    g_1D = equidistant_grid(0.0, 1.0, 11)
+    g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 15)
 
     @testset "boundary_restriction" begin
         @testset "1D" begin
--- a/test/SbpOperators/boundaryops/normal_derivative_test.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/test/SbpOperators/boundaryops/normal_derivative_test.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -7,8 +7,8 @@
 import Sbplib.SbpOperators.BoundaryOperator
 
 @testset "normal_derivative" begin
-    g_1D = equidistant_grid(11, 0.0, 1.0)
-    g_2D = equidistant_grid((11,12), (0.0, 0.0), (1.0,1.0))
+    g_1D = equidistant_grid(0.0, 1.0, 11)
+    g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12)
     @testset "normal_derivative" begin
     	stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
         @testset "1D" begin
--- a/test/SbpOperators/volumeops/constant_interior_scaling_operator_test.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/test/SbpOperators/volumeops/constant_interior_scaling_operator_test.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -33,7 +33,7 @@
     @test_throws DomainError ConstantInteriorScalingOperator(4,(2,3), 3)
 
     @testset "Grid constructor" begin
-        g = equidistant_grid(11, 0., 2.)
+        g = equidistant_grid(0., 2., 11)
         @test ConstantInteriorScalingOperator(g, 3., (.1,.2)) isa ConstantInteriorScalingOperator{Float64}
     end
 end
--- a/test/SbpOperators/volumeops/derivatives/dissipation_test.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/test/SbpOperators/volumeops/derivatives/dissipation_test.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -27,7 +27,7 @@
 end
 
 @testset "undivided_skewed04" begin
-    g = equidistant_grid(20, 0., 11.)
+    g = equidistant_grid(0., 11., 20)
     D,Dᵀ = undivided_skewed04(g, 1)
 
     @test D isa LazyTensor{Float64,1,1}
@@ -35,7 +35,7 @@
 
      @testset "Accuracy conditions" begin
         N = 20
-        g = equidistant_grid(N, 0//1,2//1)
+        g = equidistant_grid(0//1, 2//1, N)
         h = only(spacing(g))
         @testset "D_$p" for p ∈ [1,2,3,4]
             D,Dᵀ = undivided_skewed04(g, p)
@@ -67,7 +67,7 @@
             return Dmat
         end
 
-        g = equidistant_grid(11, 0., 1.)
+        g = equidistant_grid(0., 1., 11)
         @testset "D_$p" for p ∈ [1,2,3,4]
             D,Dᵀ = undivided_skewed04(g, p)
 
@@ -80,7 +80,7 @@
 
     @testset "2D" begin
         N = 20
-        g = equidistant_grid((N,2N), (0,0), (2,1))
+        g = equidistant_grid((0,0), (2,1), N, 2N)
         h = spacing.(g.grids)
 
         D,Dᵀ = undivided_skewed04(g, 3, 2)
--- a/test/SbpOperators/volumeops/derivatives/first_derivative_test.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/test/SbpOperators/volumeops/derivatives/first_derivative_test.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -24,8 +24,8 @@
     @testset "Constructors" begin
         stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
 
-        g₁ = equidistant_grid(11, 0., 1.)
-        g₂ = equidistant_grid((11,14), (0.,1.), (1.,3.))
+        g₁ = equidistant_grid(0., 1., 11)
+        g₂ = equidistant_grid((0.,1.), (1.,3.), 11, 14)
         
         @test first_derivative(g₁, stencil_set) isa LazyTensor{Float64,1,1}
         @test first_derivative(g₂, stencil_set, 2) isa LazyTensor{Float64,2,2}
@@ -38,7 +38,7 @@
 
     @testset "Accuracy conditions" begin
         N = 20
-        g = equidistant_grid(N, 0//1,2//1)
+        g = equidistant_grid(0//1, 2//1, N)
         @testset for order ∈ [2,4]
             stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order)
             D₁ = first_derivative(g, stencil_set)
@@ -68,7 +68,7 @@
 
     @testset "Accuracy on function" begin
         @testset "1D" begin
-            g = equidistant_grid(30, 0.,1.)
+            g = equidistant_grid(0., 1., 30)
             v = eval_on(g, x->exp(x))
             @testset for (order, tol) ∈ [(2, 6e-3),(4, 2e-4)]
                 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order)
@@ -79,7 +79,7 @@
         end
 
         @testset "2D" begin
-            g = equidistant_grid((30,60), (0.,0.),(1.,2.))
+            g = equidistant_grid((0.,0.),(1.,2.), 30, 60)
             v = eval_on(g, (x,y)->exp(0.8x+1.2*y))
             @testset for (order, tol) ∈ [(2, 6e-3),(4, 3e-4)]
                 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order)
--- a/test/SbpOperators/volumeops/derivatives/second_derivative_test.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/test/SbpOperators/volumeops/derivatives/second_derivative_test.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -15,8 +15,8 @@
     closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
     Lx = 3.5
     Ly = 3.
-    g_1D = equidistant_grid(121, 0.0, Lx)
-    g_2D = equidistant_grid((121,123), (0.0, 0.0), (Lx, Ly))
+    g_1D = equidistant_grid(0.0, Lx, 121)
+    g_2D = equidistant_grid((0.0, 0.0), (Lx, Ly), 121, 123)
 
     @testset "Constructors" begin
         @testset "1D" begin
--- a/test/SbpOperators/volumeops/derivatives/second_derivative_variable_test.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/test/SbpOperators/volumeops/derivatives/second_derivative_variable_test.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -12,7 +12,7 @@
     stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
 
     @testset "1D" begin
-        g = equidistant_grid(11, 0., 1.)
+        g = equidistant_grid(0., 1., 11)
         c = [  1.,  3.,  6., 10., 15., 21., 28., 36., 45., 55., 66.]
 
         @testset "checking c" begin
@@ -27,7 +27,7 @@
 
         @testset "application" begin
             function apply_to_functions(; v, c)
-                g = equidistant_grid(11, 0., 10.) # h = 1
+                g = equidistant_grid(0., 10., 11) # h = 1
                 c̄ = eval_on(g,c)
                 v̄ = eval_on(g,v)
 
@@ -44,12 +44,12 @@
     end
 
     @testset "2D" begin
-        g = equidistant_grid((11,9), (0.,0.), (10.,8.)) # h = 1
+        g = equidistant_grid((0.,0.), (10.,8.), 11, 9) # h = 1
         c = eval_on(g, (x,y)->x+y)
 
         @testset "application" begin
             function apply_to_functions(dir; v, c)
-                g = equidistant_grid((11,9), (0.,0.), (10.,8.)) # h = 1
+                g = equidistant_grid((0.,0.), (10.,8.), 11, 9) # h = 1
                 c̄ = eval_on(g,c)
                 v̄ = eval_on(g,v)
 
@@ -89,7 +89,7 @@
                 Dxv(x,y) = cos(x)*exp(x) - (exp(x) + exp(1.5 - 1.5y))*sin(x)
                 Dyv(x,y) = -1.5(1.5exp(x) + 1.5exp(1.5 - 1.5y))*cos(1.5 - 1.5y) - 2.25exp(1.5 - 1.5y)*sin(1.5 - 1.5y)
 
-                g₁ = equidistant_grid((60,67), (0.,0.), (1.,2.))
+                g₁ = equidistant_grid((0.,0.), (1.,2.), 60, 67)
                 g₂ = refine(g₁,2)
 
                 c̄₁ = eval_on(g₁, c)
@@ -155,7 +155,7 @@
         @testset "application" begin
 
             function apply_to_functions(; v, c)
-                g = equidistant_grid(11, 0., 10.) # h = 1
+                g = equidistant_grid(0., 10., 11) # h = 1
                 c̄ = eval_on(g,c)
                 v̄ = eval_on(g,v)
 
@@ -171,7 +171,7 @@
         end
 
         @testset "type stability" begin
-            g = equidistant_grid(11, 0., 10.) # h = 1
+            g = equidistant_grid(0., 10., 11) # h = 1
             c̄ = eval_on(g,x-> -1)
             v̄ = eval_on(g,x->1.)
 
@@ -185,7 +185,7 @@
     end
 
     @testset "2D" begin
-        g = equidistant_grid((11,9), (0.,0.), (10.,8.)) # h = 1
+        g = equidistant_grid((0.,0.), (10.,8.), 11, 9) # h = 1
         c = eval_on(g, (x,y)->x+y)
         @testset "Constructors" begin
             @test SecondDerivativeVariable(c, interior_stencil, closure_stencils, 1) isa LazyTensor
@@ -210,7 +210,7 @@
 
         @testset "application" begin
             function apply_to_functions(dir; v, c)
-                g = equidistant_grid((11,9), (0.,0.), (10.,8.)) # h = 1
+                g = equidistant_grid((0.,0.), (10.,8.), 11, 9) # h = 1
                 c̄ = eval_on(g,c)
                 v̄ = eval_on(g,v)
 
--- a/test/SbpOperators/volumeops/inner_products/inner_product_test.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/test/SbpOperators/volumeops/inner_products/inner_product_test.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -10,9 +10,9 @@
     Lx = π/2.
     Ly = Float64(π)
     Lz = 1.
-    g_1D = equidistant_grid(77, 0.0, Lx)
-    g_2D = equidistant_grid((77,66), (0.0, 0.0), (Lx,Ly))
-    g_3D = equidistant_grid((10,10, 10), (0.0, 0.0, 0.0), (Lx,Ly,Lz))
+    g_1D = equidistant_grid(0.0, Lx, 77)
+    g_2D = equidistant_grid((0.0, 0.0), (Lx,Ly), 77, 66)
+    g_3D = equidistant_grid((0.0, 0.0, 0.0), (Lx,Ly,Lz), 10, 10, 10)
     @testset "inner_product" begin
         stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
         @testset "0D" begin
--- a/test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -9,8 +9,8 @@
 @testset "Diagonal-stencil inverse_inner_product" begin
     Lx = π/2.
     Ly = Float64(π)
-    g_1D = equidistant_grid(77, 0.0, Lx)
-    g_2D = equidistant_grid((77,66), (0.0, 0.0), (Lx,Ly))
+    g_1D = equidistant_grid(0.0, Lx, 77)
+    g_2D = equidistant_grid((0.0, 0.0), (Lx,Ly), 77, 66)
     @testset "inverse_inner_product" begin
         stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
         @testset "0D" begin
--- a/test/SbpOperators/volumeops/laplace/laplace_test.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/test/SbpOperators/volumeops/laplace/laplace_test.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -8,8 +8,8 @@
     # Default stencils (4th order)
     operator_path = sbp_operators_path()*"standard_diagonal.toml"
     stencil_set = read_stencil_set(operator_path; order=4)
-    g_1D = equidistant_grid(101, 0.0, 1.)
-    g_3D = equidistant_grid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.))
+    g_1D = equidistant_grid(0.0, 1., 101)
+    g_3D = equidistant_grid((0.0, -1.0, 0.0), (1., 1., 1.), 51, 101, 52)
 
     @testset "Constructors" begin
         @testset "1D" begin
@@ -69,8 +69,8 @@
 @testset "laplace" begin
     operator_path = sbp_operators_path()*"standard_diagonal.toml"
     stencil_set = read_stencil_set(operator_path; order=4)
-    g_1D = equidistant_grid(101, 0.0, 1.)
-    g_3D = equidistant_grid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.))
+    g_1D = equidistant_grid(0.0, 1., 101)
+    g_3D = equidistant_grid((0.0, -1.0, 0.0), (1., 1., 1.), 51, 101, 52)
 
     @testset "1D" begin
         Δ = laplace(g_1D, stencil_set)
--- a/test/SbpOperators/volumeops/stencil_operator_distinct_closures_test.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/test/SbpOperators/volumeops/stencil_operator_distinct_closures_test.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -8,7 +8,7 @@
 import Sbplib.SbpOperators.StencilOperatorDistinctClosures
 
 @testset "StencilOperatorDistinctClosures" begin
-    g = equidistant_grid(11, 0., 1.)
+    g = equidistant_grid(0., 1., 11)
 
     lower_closure = (
         Stencil(-1,1, center=1),
--- a/test/SbpOperators/volumeops/volume_operator_test.jl	Sat Apr 13 23:44:56 2024 +0200
+++ b/test/SbpOperators/volumeops/volume_operator_test.jl	Sat Apr 13 23:49:39 2024 +0200
@@ -14,7 +14,7 @@
 @testset "VolumeOperator" begin
     inner_stencil = CenteredStencil(1/4, 2/4, 1/4)
     closure_stencils = (Stencil(1/2, 1/2; center=1), Stencil(2.,1.; center=2))
-    g = equidistant_grid(11,0.,1.)
+    g = equidistant_grid(0.,1., 11)
 
     @testset "Constructors" begin
         op = VolumeOperator(inner_stencil,closure_stencils,(11,),even)