Mercurial > repos > public > sbplib_julia
changeset 781:d2f4ac2be47f operator_storage_array_of_table
Fix derivatives tests
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 19 Jul 2021 20:10:31 +0200 |
parents | 3b29b2ff1f0e |
children | f6e56d5dbc17 |
files | test/SbpOperators/volumeops/derivatives/second_derivative_test.jl |
diffstat | 1 files changed, 23 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/test/SbpOperators/volumeops/derivatives/second_derivative_test.jl Mon Jul 19 08:47:33 2021 +0200 +++ b/test/SbpOperators/volumeops/derivatives/second_derivative_test.jl Mon Jul 19 20:10:31 2021 +0200 @@ -7,7 +7,9 @@ import Sbplib.SbpOperators.VolumeOperator @testset "SecondDerivative" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) + closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) Lx = 3.5 Ly = 3. g_1D = EquidistantGrid(121, 0.0, Lx) @@ -15,13 +17,13 @@ @testset "Constructors" begin @testset "1D" begin - Dₓₓ = second_derivative(g_1D,op.innerStencil,op.closureStencils) - @test Dₓₓ == second_derivative(g_1D,op.innerStencil,op.closureStencils,1) + Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) + @test Dₓₓ == second_derivative(g_1D,inner_stencil,closure_stencils,1) @test Dₓₓ isa VolumeOperator end @testset "2D" begin - Dₓₓ = second_derivative(g_2D,op.innerStencil,op.closureStencils,1) - D2 = second_derivative(g_1D,op.innerStencil,op.closureStencils) + Dₓₓ = second_derivative(g_2D,inner_stencil,closure_stencils,1) + D2 = second_derivative(g_1D,inner_stencil,closure_stencils) I = IdentityMapping{Float64}(size(g_2D)[2]) @test Dₓₓ == D2⊗I @test Dₓₓ isa TensorMapping{T,2,2} where T @@ -45,8 +47,10 @@ # 2nd order interior stencil, 1nd order boundary stencil, # implies that L*v should be exact for monomials up to order 2. @testset "2nd order" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - Dₓₓ = second_derivative(g_1D,op.innerStencil,op.closureStencils) + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) + inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) + closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) + Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 @@ -56,8 +60,10 @@ # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for monomials up to order 3. @testset "4th order" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - Dₓₓ = second_derivative(g_1D,op.innerStencil,op.closureStencils) + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) + closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) + Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @@ -82,8 +88,10 @@ # 2nd order interior stencil, 1st order boundary stencil, # implies that L*v should be exact for binomials up to order 2. @testset "2nd order" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - Dyy = second_derivative(g_2D,op.innerStencil,op.closureStencils,2) + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) + inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) + closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) + Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2) @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 @@ -93,8 +101,10 @@ # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for binomials up to order 3. @testset "4th order" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - Dyy = second_derivative(g_2D,op.innerStencil,op.closureStencils,2) + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) + closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) + Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9