changeset 312:c1fcc35e19cb

Make Laplace consist of tuples of SecondDerivatives. Begin cleanup of functionallity which should be moved to separate files. WIP
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Wed, 09 Sep 2020 21:18:28 +0200
parents f2d6ec89dfc5
children d1004b881da1
files SbpOperators/src/laplace/laplace.jl
diffstat 1 files changed, 106 insertions(+), 141 deletions(-) [+]
line wrap: on
line diff
--- a/SbpOperators/src/laplace/laplace.jl	Wed Sep 09 21:16:13 2020 +0200
+++ b/SbpOperators/src/laplace/laplace.jl	Wed Sep 09 21:18:28 2020 +0200
@@ -1,3 +1,4 @@
+export Laplace
 """
     Laplace{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim}
 
@@ -5,167 +6,131 @@
 The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative
 tensor operators.
 """
-struct Laplace{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim}
-    D2::NTuple(Dim,SecondDerivative{T,N,M,K})
+#export quadrature, inverse_quadrature, boundary_quadrature, boundary_value, normal_derivative
+struct Laplace{Dim,T,N,M,K} <: TensorOperator{T,Dim}
+    D2::NTuple{Dim,SecondDerivative{T,N,M,K}}
     #TODO: Write a good constructor
 end
-export Laplace
 
-LazyTensors.domain_size(H::Laplace{Dim}, range_size::NTuple{Dim,Integer}) = range_size
+LazyTensors.domain_size(H::Laplace{Dim}, range_size::NTuple{Dim,Integer}) where {Dim} = range_size
 
-function LazyTensors.apply(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim}
+function LazyTensors.apply(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim}
     error("not implemented")
 end
 
-function LazyTensors.apply_transpose(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} = LazyTensors.apply(L, v, I)
-
 # u = L*v
-function LazyTensors.apply(L::Laplace{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T
-    @inbounds u = apply(L.D2[1],v,I)
+function LazyTensors.apply(L::Laplace{1,T}, v::AbstractVector{T}, I::Index) where T
+    @inbounds u = LazyTensors.apply(L.D2[1],v,I)
     return u
 end
 
-
-@inline function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T
+# TODO: Fix dispatch on tuples!
+@inline function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T
     # 2nd x-derivative
-    @inbounds vx = view(v, :, Int(I[2]))
-    @inbounds uᵢ = apply(L.D2[1], vx , I[1])
+    @inbounds vx = view(v, :, Int(J))
+    @inbounds uᵢ = LazyTensors.apply(L.D2[1], vx , I)
 
     # 2nd y-derivative
-    @inbounds vy = view(v, Int(I[1]), :)
-    @inbounds uᵢ += apply(L.D2[2], vy , I[2])
+    @inbounds vy = view(v, Int(I), :)
+    @inbounds uᵢ += LazyTensors.apply(L.D2[2], vy , J)
 
     return uᵢ
 end
 
-quadrature(L::Laplace) = Quadrature(L.op, L.grid)
-inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid)
-boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId)
-normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId)
-boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId)
-export quadrature
-
-"""
-    BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1}
-
-Implements the boundary operator `e` as a TensorMapping
-"""
-struct BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1}
-    op::D2{T,N,M,K}
-    grid::EquidistantGrid{2}
-    bId::CartesianBoundary
-end
-export BoundaryValue
-
-# TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue?
-# Can we give special treatment to TensorMappings that go to a higher dim?
-function LazyTensors.range_size(e::BoundaryValue{T}, domain_size::NTuple{1,Integer}) where T
-    if dim(e.bId) == 1
-        return (UnknownDim, domain_size[1])
-    elseif dim(e.bId) == 2
-        return (domain_size[1], UnknownDim)
-    end
-end
-LazyTensors.domain_size(e::BoundaryValue{T}, range_size::NTuple{2,Integer}) where T = (range_size[3-dim(e.bId)],)
-# TODO: Make a nicer solution for 3-dim(e.bId)
-
-# TODO: Make this independent of dimension
-function LazyTensors.apply(e::BoundaryValue{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T
-    i = I[dim(e.bId)]
-    j = I[3-dim(e.bId)]
-    N_i = size(e.grid)[dim(e.bId)]
-    return apply_boundary_value(e.op, v[j], i, N_i, region(e.bId))
-end
-
-function LazyTensors.apply_transpose(e::BoundaryValue{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T
-    u = selectdim(v,3-dim(e.bId),Int(I[1]))
-    return apply_boundary_value_transpose(e.op, u, region(e.bId))
+@inline function LazyTensors.apply_transpose(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim}
+    return LazyTensors.apply(L, v, I)
 end
 
-"""
-    NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1}
-
-Implements the boundary operator `d` as a TensorMapping
-"""
-struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1}
-    op::D2{T,N,M,K}
-    grid::EquidistantGrid{2}
-    bId::CartesianBoundary
-end
-export NormalDerivative
-
-# TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue?
-# Can we give special treatment to TensorMappings that go to a higher dim?
-function LazyTensors.range_size(e::NormalDerivative, domain_size::NTuple{1,Integer})
-    if dim(e.bId) == 1
-        return (UnknownDim, domain_size[1])
-    elseif dim(e.bId) == 2
-        return (domain_size[1], UnknownDim)
-    end
-end
-LazyTensors.domain_size(e::NormalDerivative, range_size::NTuple{2,Integer}) = (range_size[3-dim(e.bId)],)
-
-# TODO: Not type stable D:<
-# TODO: Make this independent of dimension
-function LazyTensors.apply(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T
-    i = I[dim(d.bId)]
-    j = I[3-dim(d.bId)]
-    N_i = size(d.grid)[dim(d.bId)]
-    h_inv = inverse_spacing(d.grid)[dim(d.bId)]
-    return apply_normal_derivative(d.op, h_inv, v[j], i, N_i, region(d.bId))
-end
-
-function LazyTensors.apply_transpose(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T
-    u = selectdim(v,3-dim(d.bId),Int(I[1]))
-    return apply_normal_derivative_transpose(d.op, inverse_spacing(d.grid)[dim(d.bId)], u, region(d.bId))
-end
-
-"""
-    BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
-
-Implements the boundary operator `q` as a TensorOperator
-"""
-struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
-    op::D2{T,N,M,K}
-    grid::EquidistantGrid{2}
-    bId::CartesianBoundary
-end
-export BoundaryQuadrature
-
-# TODO: Make this independent of dimension
-function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T
-    h = spacing(q.grid)[3-dim(q.bId)]
-    N = size(v)
-    return apply_quadrature(q.op, h, v[I[1]], I[1], N[1])
-end
-
-LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I)
-
-
-
-
-struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end
-
-function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid}
-    e = boundary_value(L, Bid())
-    d = normal_derivative(L, Bid())
-    Hᵧ = boundary_quadrature(L, Bid())
-    H⁻¹ = inverse_quadrature(L)
-    return (-H⁻¹*e*Hᵧ*(d'*v - g))[I]
-end
-
-struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition
-    tau::Float64
-end
-
-function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid}
-    e = boundary_value(L, Bid())
-    d = normal_derivative(L, Bid())
-    Hᵧ = boundary_quadrature(L, Bid())
-    H⁻¹ = inverse_quadrature(L)
-    return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I]
-    # Need to handle scalar multiplication and addition of TensorMapping
-end
+# quadrature(L::Laplace) = Quadrature(L.op, L.grid)
+# inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid)
+# boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId)
+# normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId)
+# boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId)
+# export NormalDerivative
+# """
+#     NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1}
+#
+# Implements the boundary operator `d` as a TensorMapping
+# """
+# struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1}
+#     op::D2{T,N,M,K}
+#     grid::EquidistantGrid{2}
+#     bId::CartesianBoundary
+# end
+#
+# # TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue?
+# # Can we give special treatment to TensorMappings that go to a higher dim?
+# function LazyTensors.range_size(e::NormalDerivative, domain_size::NTuple{1,Integer})
+#     if dim(e.bId) == 1
+#         return (UnknownDim, domain_size[1])
+#     elseif dim(e.bId) == 2
+#         return (domain_size[1], UnknownDim)
+#     end
+# end
+# LazyTensors.domain_size(e::NormalDerivative, range_size::NTuple{2,Integer}) = (range_size[3-dim(e.bId)],)
+#
+# # TODO: Not type stable D:<
+# # TODO: Make this independent of dimension
+# function LazyTensors.apply(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T
+#     i = I[dim(d.bId)]
+#     j = I[3-dim(d.bId)]
+#     N_i = size(d.grid)[dim(d.bId)]
+#     h_inv = inverse_spacing(d.grid)[dim(d.bId)]
+#     return apply_normal_derivative(d.op, h_inv, v[j], i, N_i, region(d.bId))
+# end
+#
+# function LazyTensors.apply_transpose(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T
+#     u = selectdim(v,3-dim(d.bId),Int(I[1]))
+#     return apply_normal_derivative_transpose(d.op, inverse_spacing(d.grid)[dim(d.bId)], u, region(d.bId))
+# end
+#
+# """
+#     BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
+#
+# Implements the boundary operator `q` as a TensorOperator
+# """
+# export BoundaryQuadrature
+# struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
+#     op::D2{T,N,M,K}
+#     grid::EquidistantGrid{2}
+#     bId::CartesianBoundary
+# end
+#
+#
+# # TODO: Make this independent of dimension
+# function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T
+#     h = spacing(q.grid)[3-dim(q.bId)]
+#     N = size(v)
+#     return apply_quadrature(q.op, h, v[I[1]], I[1], N[1])
+# end
+#
+# LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I)
+#
+#
+#
+#
+# struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end
+#
+# function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid}
+#     e = boundary_value(L, Bid())
+#     d = normal_derivative(L, Bid())
+#     Hᵧ = boundary_quadrature(L, Bid())
+#     H⁻¹ = inverse_quadrature(L)
+#     return (-H⁻¹*e*Hᵧ*(d'*v - g))[I]
+# end
+#
+# struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition
+#     tau::Float64
+# end
+#
+# function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid}
+#     e = boundary_value(L, Bid())
+#     d = normal_derivative(L, Bid())
+#     Hᵧ = boundary_quadrature(L, Bid())
+#     H⁻¹ = inverse_quadrature(L)
+#     return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I]
+#     # Need to handle scalar multiplication and addition of TensorMapping
+# end
 
 # function apply(s::MyWaveEq{D},  v::AbstractArray{T,D}, i::CartesianIndex{D}) where D
     #   return apply(s.L, v, i) +