Mercurial > repos > public > sbplib_julia
changeset 676:bf48761c1345 feature/laplace_opset
Merge with feature/boundary_quads
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 06 Feb 2021 14:03:14 +0100 |
parents | 2d56a53a1646 (current diff) 538ccbaeb1f8 (diff) |
children | 011863b3f24c |
files | |
diffstat | 2 files changed, 103 insertions(+), 35 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/quadratures/quadrature.jl Sun Jan 31 22:19:53 2021 +0100 +++ b/src/SbpOperators/volumeops/quadratures/quadrature.jl Sat Feb 06 14:03:14 2021 +0100 @@ -1,36 +1,69 @@ """ - Quadrature(grid::EquidistantGrid, inner_stencil, closure_stencils) + quadrature(grid::EquidistantGrid, inner_stencil, closure_stencils) + quadrature(grid::EquidistantGrid, closure_stencils) Creates the quadrature operator `H` as a `TensorMapping` -The quadrature approximates the integral operator on the grid using +`H` approximiates the integral operator on `grid` the using the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` -for the points in the closure regions. +for the points in the closure regions. If `inner_stencil` is omitted a central +interior stencil with weight 1 is used. On a one-dimensional `grid`, `H` is a `VolumeOperator`. On a multi-dimensional `grid`, `H` is the outer product of the 1-dimensional quadrature operators in each coordinate direction. Also see the documentation of `SbpOperators.volume_operator(...)` for more details. """ -function Quadrature(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) where Dim +function quadrature(grid::EquidistantGrid, inner_stencil, closure_stencils) where Dim h = spacing(grid) H = SbpOperators.volume_operator(grid, scale(inner_stencil,h[1]), scale.(closure_stencils,h[1]), even, 1) - for i ∈ 2:Dim + for i ∈ 2:dimension(grid) Hᵢ = SbpOperators.volume_operator(grid, scale(inner_stencil,h[i]), scale.(closure_stencils,h[i]), even, i) H = H∘Hᵢ end return H end -export Quadrature +export quadrature + +function quadrature(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T}}) where {M,T} + inner_stencil = Stencil(Tuple{T}(1),center=1) + return quadrature(grid, inner_stencil, closure_stencils) +end """ - DiagonalQuadrature(grid::EquidistantGrid, closure_stencils) + boundary_quadrature(grid::EquidistantGrid, inner_stencil, closure_stencils, id::CartesianBoundary) + boundary_quadrature(grid::EquidistantGrid{1}, inner_stencil, closure_stencils, id) + boundary_quadrature(grid::EquidistantGrid, closure_stencils, id) -Creates the quadrature operator with the inner stencil 1/h and 1-element sized -closure stencils (i.e the operator is diagonal) +Creates the lower-dimensional quadrature operator associated with the boundary +of `grid` specified by `id`. The quadrature operator is defined on the grid +spanned by the dimensions orthogonal to the boundary coordinate direction. +If the dimension of `grid` is 1, then the boundary quadrature is the 0-dimensional +`IdentityMapping`. If `inner_stencil` is omitted a central interior stencil with +weight 1 is used. """ -function DiagonalQuadrature(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T,1}}) where {M,T} +function boundary_quadrature(grid::EquidistantGrid, inner_stencil, closure_stencils, id::CartesianBoundary) + return quadrature(orthogonal_grid(grid,dim(id)),inner_stencil,closure_stencils) +end +export boundary_quadrature + +function boundary_quadrature(grid::EquidistantGrid{1}, inner_stencil::Stencil{T}, closure_stencils::NTuple{M,Stencil{T}}, id::CartesianBoundary{1}) where {M,T} + return IdentityMapping{T}() +end + +function boundary_quadrature(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T}}, id::CartesianBoundary) where {M,T} inner_stencil = Stencil(Tuple{T}(1),center=1) - return Quadrature(grid, inner_stencil, closure_stencils) + return boundary_quadrature(grid,inner_stencil,closure_stencils,id) end -export DiagonalQuadrature + +""" + orthogonal_grid(grid,dim) + +Creates the lower-dimensional restriciton of `grid` spanned by the dimensions +orthogonal to `dim`. +""" +function orthogonal_grid(grid,dim) + dims = collect(1:dimension(grid)) + orth_dims = dims[dims .!= dim] + return restrict(grid,orth_dims) +end
--- a/test/testSbpOperators.jl Sun Jan 31 22:19:53 2021 +0100 +++ b/test/testSbpOperators.jl Sat Feb 06 14:03:14 2021 +0100 @@ -290,7 +290,7 @@ @test Dₓₓ*v ≈ vₓₓ rtol = 5e-4 norm = l2 end end - + @testset "2D" begin l2(v) = sqrt(prod(spacing(g_2D))*sum(v.^2)); binomials = () @@ -390,38 +390,73 @@ end end -@testset "DiagonalQuadrature" begin +@testset "Quadrature diagonal" begin Lx = π/2. Ly = Float64(π) + Lz = 1. g_1D = EquidistantGrid(77, 0.0, Lx) g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) + g_3D = EquidistantGrid((10,10, 10), (0.0, 0.0, 0.0), (Lx,Ly,Lz)) integral(H,v) = sum(H*v) - @testset "Constructors" begin + @testset "quadrature" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + @testset "1D" begin + H = quadrature(g_1D,op.quadratureClosure) + inner_stencil = Stencil((1.,),center=1) + @test H == quadrature(g_1D,inner_stencil,op.quadratureClosure) + @test H isa TensorMapping{T,1,1} where T + end + @testset "2D" begin + H = quadrature(g_2D,op.quadratureClosure) + H_x = quadrature(restrict(g_2D,1),op.quadratureClosure) + H_y = quadrature(restrict(g_2D,2),op.quadratureClosure) + @test H == H_x⊗H_y + @test H isa TensorMapping{T,2,2} where T + end + end + + @testset "boundary_quadrature" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "1D" begin - H = DiagonalQuadrature(g_1D,op.quadratureClosure) - inner_stencil = Stencil((1.,),center=1) - @test H == Quadrature(g_1D,inner_stencil,op.quadratureClosure) - @test H isa TensorMapping{T,1,1} where T + (id_l, id_r) = boundary_identifiers(g_1D) + @test boundary_quadrature(g_1D,op.quadratureClosure,id_l) == IdentityMapping{Float64}() + @test boundary_quadrature(g_1D,op.quadratureClosure,id_r) == IdentityMapping{Float64}() + + end + @testset "2D" begin + (id_w, id_e, id_s, id_n) = boundary_identifiers(g_2D) + H_x = quadrature(restrict(g_2D,1),op.quadratureClosure) + H_y = quadrature(restrict(g_2D,2),op.quadratureClosure) + @test boundary_quadrature(g_2D,op.quadratureClosure,id_w) == H_y + @test boundary_quadrature(g_2D,op.quadratureClosure,id_e) == H_y + @test boundary_quadrature(g_2D,op.quadratureClosure,id_s) == H_x + @test boundary_quadrature(g_2D,op.quadratureClosure,id_n) == H_x end - @testset "1D" begin - H = DiagonalQuadrature(g_2D,op.quadratureClosure) - H_x = DiagonalQuadrature(restrict(g_2D,1),op.quadratureClosure) - H_y = DiagonalQuadrature(restrict(g_2D,2),op.quadratureClosure) - @test H == H_x⊗H_y - @test H isa TensorMapping{T,2,2} where T + @testset "3D" begin + (id_w, id_e, + id_s, id_n, + id_t, id_b) = boundary_identifiers(g_3D) + H_xy = quadrature(restrict(g_3D,[1,2]),op.quadratureClosure) + H_xz = quadrature(restrict(g_3D,[1,3]),op.quadratureClosure) + H_yz = quadrature(restrict(g_3D,[2,3]),op.quadratureClosure) + @test boundary_quadrature(g_3D,op.quadratureClosure,id_w) == H_yz + @test boundary_quadrature(g_3D,op.quadratureClosure,id_e) == H_yz + @test boundary_quadrature(g_3D,op.quadratureClosure,id_s) == H_xz + @test boundary_quadrature(g_3D,op.quadratureClosure,id_n) == H_xz + @test boundary_quadrature(g_3D,op.quadratureClosure,id_t) == H_xy + @test boundary_quadrature(g_3D,op.quadratureClosure,id_b) == H_xy end end @testset "Sizes" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "1D" begin - H = DiagonalQuadrature(g_1D,op.quadratureClosure) + H = quadrature(g_1D,op.quadratureClosure) @test domain_size(H) == size(g_1D) @test range_size(H) == size(g_1D) end @testset "2D" begin - H = DiagonalQuadrature(g_2D,op.quadratureClosure) + H = quadrature(g_2D,op.quadratureClosure) @test domain_size(H) == size(g_2D) @test range_size(H) == size(g_2D) end @@ -438,7 +473,7 @@ @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - H = DiagonalQuadrature(g_1D,op.quadratureClosure) + H = quadrature(g_1D,op.quadratureClosure) for i = 1:2 @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 end @@ -447,7 +482,7 @@ @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - H = DiagonalQuadrature(g_1D,op.quadratureClosure) + H = quadrature(g_1D,op.quadratureClosure) for i = 1:4 @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 end @@ -461,13 +496,13 @@ u = evalOn(g_2D,(x,y)->sin(x)+cos(y)) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - H = DiagonalQuadrature(g_2D,op.quadratureClosure) + H = quadrature(g_2D,op.quadratureClosure) @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13 @test integral(H,u) ≈ π rtol = 1e-4 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - H = DiagonalQuadrature(g_2D,op.quadratureClosure) + H = quadrature(g_2D,op.quadratureClosure) @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13 @test integral(H,u) ≈ π rtol = 1e-8 end @@ -521,14 +556,14 @@ u = evalOn(g_1D,x->x^3-x^2+1) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - H = DiagonalQuadrature(g_1D,op.quadratureClosure) + H = quadrature(g_1D,op.quadratureClosure) Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - H = DiagonalQuadrature(g_1D,op.quadratureClosure) + H = quadrature(g_1D,op.quadratureClosure) Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 @@ -539,14 +574,14 @@ u = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y)) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - H = DiagonalQuadrature(g_2D,op.quadratureClosure) + H = quadrature(g_2D,op.quadratureClosure) Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - H = DiagonalQuadrature(g_2D,op.quadratureClosure) + H = quadrature(g_2D,op.quadratureClosure) Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15