changeset 305:bd09d67ebb22

Fix type errors in InverseQuadrature
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Wed, 09 Sep 2020 21:00:56 +0200
parents 6fa2ba769ae3
children f8a4850caed2
files SbpOperators/src/InverseQuadrature.jl
diffstat 1 files changed, 13 insertions(+), 12 deletions(-) [+]
line wrap: on
line diff
--- a/SbpOperators/src/InverseQuadrature.jl	Tue Jun 23 18:56:59 2020 +0200
+++ b/SbpOperators/src/InverseQuadrature.jl	Wed Sep 09 21:00:56 2020 +0200
@@ -1,43 +1,44 @@
 """
-    Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
+    InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
 
 Implements the inverse quadrature operator `Qi` of Dim dimension as a TensorOperator
 The multi-dimensional tensor operator consists of a tuple of 1D InverseDiagonalNorm
 tensor operators.
 """
-struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim}
+export InverseQuadrature
+struct InverseQuadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim}
     Hi::NTuple{Dim,InverseDiagonalNorm{T,N,M}}
 end
-export Quadrature
 
-LazyTensors.domain_size(Qi::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size
+LazyTensors.domain_size(Qi::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size
 
-function LazyTensors.apply(Qi::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim}
+function LazyTensors.apply(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim}
     error("not implemented")
 end
 
-LazyTensors.apply_transpose(Qi::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I)
+LazyTensors.apply_transpose(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I)
 
-@inline function LazyTensors.apply(Qi::Quadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T
+@inline function LazyTensors.apply(Qi::InverseQuadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T
     @inbounds q = apply(Qi.Hi[1], v , I[1])
     return q
 end
 
-@inline function LazyTensors.apply(Qi::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T
-    # Quadrature in x direction
+@inline function LazyTensors.apply(Qi::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T
+    # InverseQuadrature in x direction
     @inbounds vx = view(v, :, Int(I[2]))
     @inbounds qx_inv = apply(Qi.Hi[1], vx , I[1])
-    # Quadrature in y-direction
+    # InverseQuadrature in y-direction
     @inbounds vy = view(v, Int(I[1]), :)
     @inbounds qy_inv = apply(Qi.Hi[2], vy, I[2])
     return qx_inv*qy_inv
 end
 
 """
-    Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
+    InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
 
 Implements the quadrature operator `Hi` of Dim dimension as a TensorMapping
 """
+export InverseDiagonalNorm, closuresize
 struct InverseDiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1}
     h_inv::T # The reciprocl grid spacing could be included in the stencil already. Preferable?
     closure::NTuple{M,T}
@@ -48,7 +49,7 @@
     return @inbounds apply(Hi, v, I[1])
 end
 
-LazyTensors.apply_transpose(Hi::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(Hi,v,I)
+LazyTensors.apply_transpose(Hi::InverseQuadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(Hi,v,I)
 
 @inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, i::Index{Lower}) where T
     return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)]