Mercurial > repos > public > sbplib_julia
changeset 1232:a8fa8c1137cc refactor/grids
Merge refactor/LazyTensors/tuple_manipulation
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sun, 19 Feb 2023 22:07:57 +0100 |
parents | 5f677cd6f0b6 (current diff) de6a9635f293 (diff) |
children | 3924c1f6ec6d |
files | Notes.md |
diffstat | 5 files changed, 88 insertions(+), 91 deletions(-) [+] |
line wrap: on
line diff
--- a/Notes.md Sat Feb 18 11:37:35 2023 +0100 +++ b/Notes.md Sun Feb 19 22:07:57 2023 +0100 @@ -388,3 +388,9 @@ ## Name of the `VolumeOperator` type for constant stencils It seems that the name is too general. The name of the method `volume_operator` makes sense. It should return different types of `LazyTensor` specialized for the grid. A suggetion for a better name is `ConstantStencilVolumeOperator` + + +## Implementation of LazyOuterProduct +Could the implementation of LazyOuterProduct be simplified by making it a +struct containing two or more LazyTensors? (using split_tuple in a similar way +as TensorGrid)
--- a/TODO.md Sat Feb 18 11:37:35 2023 +0100 +++ b/TODO.md Sun Feb 19 22:07:57 2023 +0100 @@ -5,7 +5,6 @@ - [ ] Ändra namn på variabler och funktioner så att det följer style-guide - [ ] Add new Laplace operator to DiffOps, probably named WaveEqOp(?!!?) - [ ] Create a struct that bundles the necessary Tensor operators for solving the wave equation. - - [ ] Replace getindex hack for flattening tuples with flatten_tuple. (eg. `getindex.(range_size.(L.D2),1)`) - [ ] Use `@inferred` in a lot of tests. - [ ] Replace `@inferred` tests with a benchmark suite that automatically tests for regressions. - [ ] Make sure we are setting tolerances in tests in a consistent way
--- a/src/LazyTensors/lazy_tensor_operations.jl Sat Feb 18 11:37:35 2023 +0100 +++ b/src/LazyTensors/lazy_tensor_operations.jl Sun Feb 19 22:07:57 2023 +0100 @@ -176,7 +176,7 @@ # TODO: Implement some pretty printing in terms of ⊗. E.g InflatedTensor(I(3),B,I(2)) -> I(3)⊗B⊗I(2) function range_size(itm::InflatedTensor) - return flatten_tuple( + return concatenate_tuples( range_size(itm.before), range_size(itm.tm), range_size(itm.after), @@ -184,7 +184,7 @@ end function domain_size(itm::InflatedTensor) - return flatten_tuple( + return concatenate_tuples( domain_size(itm.before), domain_size(itm.tm), domain_size(itm.after), @@ -197,7 +197,7 @@ dim_range = range_dim(itm.tm) dim_after = range_dim(itm.after) - view_index, inner_index = split_index(Val(dim_before), Val(dim_domain), Val(dim_range), Val(dim_after), I...) + view_index, inner_index = split_index(dim_before, dim_domain, dim_range, dim_after, I...) v_inner = view(v, view_index...) return apply(itm.tm, v_inner, inner_index...) @@ -209,7 +209,7 @@ dim_range = range_dim(itm.tm) dim_after = range_dim(itm.after) - view_index, inner_index = split_index(Val(dim_before), Val(dim_range), Val(dim_domain), Val(dim_after), I...) + view_index, inner_index = split_index(dim_before, dim_range, dim_domain, dim_after, I...) v_inner = view(v, view_index...) return apply_transpose(itm.tm, v_inner, inner_index...)
--- a/src/LazyTensors/tuple_manipulation.jl Sat Feb 18 11:37:35 2023 +0100 +++ b/src/LazyTensors/tuple_manipulation.jl Sun Feb 19 22:07:57 2023 +0100 @@ -1,11 +1,12 @@ """ - split_index(::Val{dim_before}, ::Val{dim_view}, ::Val{dim_index}, ::Val{dim_after}, I...) + split_index(dim_before, dim_view, dim_index, dim_after, I...) Splits the multi-index `I` into two parts. One part which is expected to be used as a view, and one which is expected to be used as an index. Eg. -``` -split_index(Val(1),Val(3),Val(2),Val(1),(1,2,3,4)) -> (1,:,:,:,4), (2,3) +```julia-repl +julia> LazyTensors.split_index(1, 3, 2, 1, (1,2,3,4)...) +((1, Colon(), Colon(), Colon(), 4), (2, 3)) ``` `dim_view` controls how many colons are in the view, and `dim_index` controls @@ -18,62 +19,52 @@ * `length(view_index) == dim_before + dim_view + dim_after` * `length(I_middle) == dim_index` """ -function split_index(::Val{dim_before}, ::Val{dim_view}, ::Val{dim_index}, ::Val{dim_after}, I...) where {dim_before,dim_view, dim_index,dim_after} - I_before, I_middle, I_after = split_tuple(I, Val(dim_before), Val(dim_index)) +function split_index(dim_before, dim_view, dim_index, dim_after, I...) + @inline + I_before, I_middle, I_after = split_tuple(I, (dim_before, dim_index, dim_after)) view_index = (I_before..., ntuple((i)->:, dim_view)..., I_after...) return view_index, I_middle end -# TODO: Can this be replaced by something more elegant while still being type stable? 2020-10-21 -# See: -# https://github.com/JuliaLang/julia/issues/34884 -# https://github.com/JuliaLang/julia/issues/30386 -""" - slice_tuple(t, Val(l), Val(u)) - -Get a slice of a tuple in a type stable way. -Equivalent to `t[l:u]` but type stable. -""" -function slice_tuple(t,::Val{L},::Val{U}) where {L,U} - return ntuple(i->t[i+L-1], U-L+1) -end """ - split_tuple(t::Tuple{...}, ::Val{M}) where {N,M} + split_tuple(t, szs) + +Split the tuple `t` into a set of tuples of the sizes given in `szs`. +`sum(szs)` should equal `lenght(t)`. -Split the tuple `t` into two parts. the first part is `M` long. E.g -```julia -split_tuple((1,2,3,4),Val(3)) -> (1,2,3), (4,) +```julia-repl +julia> LazyTensors.split_tuple((1,2,3,4,5,6), (3,1,2)) +((1, 2, 3), (4,), (5, 6)) ``` """ -function split_tuple(t::NTuple{N,Any},::Val{M}) where {N,M} - return slice_tuple(t,Val(1), Val(M)), slice_tuple(t,Val(M+1), Val(N)) +function split_tuple(t, szs) + @inline + if length(t) != sum(szs; init=0) + throw(ArgumentError("length(t) must equal sum(szs)")) + end + + rs = sizes_to_ranges(szs) + return map(r->t[r], rs) end -""" - split_tuple(t::Tuple{...},::Val{M},::Val{K}) where {N,M,K} - -Same as `split_tuple(t::NTuple{N},::Val{M})` but splits the tuple in three parts. With the first -two parts having lenght `M` and `K`. -""" -function split_tuple(t::NTuple{N,Any},::Val{M},::Val{K}) where {N,M,K} - p1, tail = split_tuple(t, Val(M)) - p2, p3 = split_tuple(tail, Val(K)) - return p1,p2,p3 +function sizes_to_ranges(szs) + cum_szs = cumsum((0, szs...)) + return ntuple(i->cum_szs[i]+1:cum_szs[i+1], length(szs)) end """ - flatten_tuple(t) + concatenate_tuples(t...) -Takes a nested tuple and flattens the whole structure +Concatenate tuples. """ -flatten_tuple(t::NTuple{N, Number} where N) = t -flatten_tuple(t::Tuple) = ((flatten_tuple.(t)...)...,) # simplify? -flatten_tuple(ts::Vararg) = flatten_tuple(ts) +concatenate_tuples(t::Tuple,ts::Vararg{Tuple}) = (t..., concatenate_tuples(ts...)...) +concatenate_tuples(t::Tuple) = t + """ left_pad_tuple(t, val, N)
--- a/test/LazyTensors/tuple_manipulation_test.jl Sat Feb 18 11:37:35 2023 +0100 +++ b/test/LazyTensors/tuple_manipulation_test.jl Sun Feb 19 22:07:57 2023 +0100 @@ -2,63 +2,64 @@ using Sbplib.LazyTensors @testset "split_index" begin - @test LazyTensors.split_index(Val(2),Val(1),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,5,6),(3,4)) - @test LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,:,:,5,6),(3,4)) - @test LazyTensors.split_index(Val(3),Val(1),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,5,6),(4,)) - @test LazyTensors.split_index(Val(3),Val(2),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,:,5,6),(4,)) - @test LazyTensors.split_index(Val(1),Val(1),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,4,5,6),(2,3)) - @test LazyTensors.split_index(Val(1),Val(2),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,:,4,5,6),(2,3)) + @test LazyTensors.split_index(2,1,2,2, 1,2,3,4,5,6) == ((1,2,:,5,6),(3,4)) + @test LazyTensors.split_index(2,3,2,2, 1,2,3,4,5,6) == ((1,2,:,:,:,5,6),(3,4)) + @test LazyTensors.split_index(3,1,1,2, 1,2,3,4,5,6) == ((1,2,3,:,5,6),(4,)) + @test LazyTensors.split_index(3,2,1,2, 1,2,3,4,5,6) == ((1,2,3,:,:,5,6),(4,)) + @test LazyTensors.split_index(1,1,2,3, 1,2,3,4,5,6) == ((1,:,4,5,6),(2,3)) + @test LazyTensors.split_index(1,2,2,3, 1,2,3,4,5,6) == ((1,:,:,4,5,6),(2,3)) - @test LazyTensors.split_index(Val(0),Val(1),Val(3),Val(3),1,2,3,4,5,6) == ((:,4,5,6),(1,2,3)) - @test LazyTensors.split_index(Val(3),Val(1),Val(3),Val(0),1,2,3,4,5,6) == ((1,2,3,:),(4,5,6)) - - @inferred LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,2,2,4) -end + @test LazyTensors.split_index(0,1,3,3, 1,2,3,4,5,6) == ((:,4,5,6),(1,2,3)) + @test LazyTensors.split_index(3,1,3,0, 1,2,3,4,5,6) == ((1,2,3,:),(4,5,6)) -@testset "slice_tuple" begin - @test LazyTensors.slice_tuple((1,2,3),Val(1), Val(3)) == (1,2,3) - @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(2), Val(5)) == (2,3,4,5) - @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(1), Val(3)) == (1,2,3) - @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(4), Val(6)) == (4,5,6) + split_index_static(::Val{dim_before}, ::Val{dim_view}, ::Val{dim_index}, ::Val{dim_after}, I...) where {dim_before,dim_view,dim_index,dim_after} = LazyTensors.split_index(dim_before, dim_view, dim_index, dim_after, I...) + @inferred split_index_static(Val(2),Val(3),Val(2),Val(2),1,2,3,2,2,4) end @testset "split_tuple" begin - @testset "2 parts" begin - @test LazyTensors.split_tuple((),Val(0)) == ((),()) - @test LazyTensors.split_tuple((1,),Val(0)) == ((),(1,)) - @test LazyTensors.split_tuple((1,),Val(1)) == ((1,),()) - - @test LazyTensors.split_tuple((1,2,3,4),Val(0)) == ((),(1,2,3,4)) - @test LazyTensors.split_tuple((1,2,3,4),Val(1)) == ((1,),(2,3,4)) - @test LazyTensors.split_tuple((1,2,3,4),Val(2)) == ((1,2),(3,4)) - @test LazyTensors.split_tuple((1,2,3,4),Val(3)) == ((1,2,3),(4,)) - @test LazyTensors.split_tuple((1,2,3,4),Val(4)) == ((1,2,3,4),()) - - @test LazyTensors.split_tuple((1,2,true,4),Val(3)) == ((1,2,true),(4,)) + @testset "general" begin + @test LazyTensors.split_tuple((),()) == () + @test LazyTensors.split_tuple((),(0,)) == ((),) + @test LazyTensors.split_tuple((1,), (1,)) == tuple((1,)) + @test LazyTensors.split_tuple((1,2), (1,1)) == tuple((1,),(2,)) + @test LazyTensors.split_tuple((1,2), (0,1,1)) == tuple((),(1,),(2,)) + @test LazyTensors.split_tuple((1,2), (1,0,1)) == tuple((1,),(),(2,)) + @test LazyTensors.split_tuple((1,2), (1,1,0)) == tuple((1,),(2,),()) + @test LazyTensors.split_tuple((1,2,3,4), (2,0,1,1)) == tuple((1,2),(),(3,),(4,)) - @inferred LazyTensors.split_tuple((1,2,3,4),Val(3)) - @inferred LazyTensors.split_tuple((1,2,true,4),Val(3)) - end + err_msg = "length(t) must equal sum(szs)" + @test_throws ArgumentError(err_msg) LazyTensors.split_tuple((), (2,)) + @test_throws ArgumentError(err_msg) LazyTensors.split_tuple((2,), ()) + @test_throws ArgumentError(err_msg) LazyTensors.split_tuple((1,), (2,)) + @test_throws ArgumentError(err_msg) LazyTensors.split_tuple((1,2), (1,2)) + @test_throws ArgumentError(err_msg) LazyTensors.split_tuple((1,2), (1)) - @testset "3 parts" begin - @test LazyTensors.split_tuple((),Val(0),Val(0)) == ((),(),()) - @test LazyTensors.split_tuple((1,2,3),Val(1), Val(1)) == ((1,),(2,),(3,)) - @test LazyTensors.split_tuple((1,true,3),Val(1), Val(1)) == ((1,),(true,),(3,)) - - @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(1),Val(2)) == ((1,),(2,3),(4,5,6)) - @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2)) == ((1,2,3),(4,5),(6,)) - - @inferred LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2)) - @inferred LazyTensors.split_tuple((1,true,3),Val(1), Val(1)) + split_tuple_static(t, ::Val{SZS}) where {SZS} = LazyTensors.split_tuple(t,SZS) + @inferred split_tuple_static((1,2,3,4,5,6), Val((3,1,2))) + @inferred split_tuple_static((1,2,3,4),Val((3,1))) + @inferred split_tuple_static((1,2,true,4),Val((3,1))) + @inferred split_tuple_static((1,2,3,4,5,6),Val((3,2,1))) + @inferred split_tuple_static((1,true,3),Val((1,1,1))) end end -@testset "flatten_tuple" begin - @test LazyTensors.flatten_tuple((1,)) == (1,) - @test LazyTensors.flatten_tuple((1,2,3,4,5,6)) == (1,2,3,4,5,6) - @test LazyTensors.flatten_tuple((1,2,(3,4),5,6)) == (1,2,3,4,5,6) - @test LazyTensors.flatten_tuple((1,2,(3,(4,5)),6)) == (1,2,3,4,5,6) - @test LazyTensors.flatten_tuple(((1,2),(3,4),(5,),6)) == (1,2,3,4,5,6) +@testset "sizes_to_ranges" begin + @test LazyTensors.sizes_to_ranges((1,)) == (1:1,) + @test LazyTensors.sizes_to_ranges((2,)) == (1:2,) + @test LazyTensors.sizes_to_ranges((2,3)) == (1:2,3:5) + @test LazyTensors.sizes_to_ranges((3,2,4)) == (1:3,4:5,6:9) + @test LazyTensors.sizes_to_ranges((0,2)) == (1:0,1:2) + @test LazyTensors.sizes_to_ranges((2,0)) == (1:2,2:1) + @test LazyTensors.sizes_to_ranges((2,0,3)) == (1:2,2:1,3:5) +end + +@testset "concatenate_tuples" begin + @test LazyTensors.concatenate_tuples(()) == () + @test LazyTensors.concatenate_tuples((1,)) == (1,) + @test LazyTensors.concatenate_tuples((1,), ()) == (1,) + @test LazyTensors.concatenate_tuples((),(1,)) == (1,) + @test LazyTensors.concatenate_tuples((1,2,3),(4,5)) == (1,2,3,4,5) + @test LazyTensors.concatenate_tuples((1,2,3),(4,5),(6,7)) == (1,2,3,4,5,6,7) end @testset "left_pad_tuple" begin