Mercurial > repos > public > sbplib_julia
changeset 797:92fafe5980dd operator_storage_array_of_table
Update inverse_inner_product to use the new storage
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sun, 25 Jul 2021 14:58:50 +0200 |
parents | f682e4fe3cef |
children | 997d6e641bf0 |
files | src/SbpOperators/volumeops/inner_products/inverse_inner_product.jl test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl |
diffstat | 2 files changed, 44 insertions(+), 41 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/inner_products/inverse_inner_product.jl Sun Jul 25 14:39:41 2021 +0200 +++ b/src/SbpOperators/volumeops/inner_products/inverse_inner_product.jl Sun Jul 25 14:58:50 2021 +0200 @@ -1,37 +1,28 @@ """ - inverse_inner_product(grid::EquidistantGrid, inv_inner_stencil, inv_closure_stencils) - -Creates the inverse inner product operator `H⁻¹` as a `TensorMapping` on an -equidistant grid. `H⁻¹` is defined implicitly by `H⁻¹∘H = I`, where -`H` is the corresponding inner product operator and `I` is the `IdentityMapping`. + inverse_inner_product(grid::EquidistantGrid, interior_weight, closure_weights) -`inverse_inner_product(grid::EquidistantGrid, inv_inner_stencil, inv_closure_stencils)` -constructs `H⁻¹` using a set of stencils `inv_closure_stencils` for the points -in the closure regions and the stencil `inv_inner_stencil` in the interior. +Constructs the inverse inner product operator `H⁻¹` as a `TensorMapping` using the weights of `H`, `interior_weight`, `closure_weights`. `H⁻¹` is inverse of the inner product operator `H`. The weights are the -On a 1-dimensional `grid`, `H⁻¹` is a `VolumeOperator`. On a N-dimensional -`grid`, `H⁻¹` is the outer product of the 1-dimensional inverse inner product -operators in each coordinate direction. Also see the documentation of -`SbpOperators.volume_operator(...)` for more details. On a 0-dimensional `grid`, +On a 1-dimensional grid, `H⁻¹` is a `ConstantInteriorScalingOperator`. On an N-dimensional +grid, `H⁻¹` is the outer product of the 1-dimensional inverse inner product +operators for each coordinate direction. On a 0-dimensional `grid`, `H⁻¹` is a 0-dimensional `IdentityMapping`. """ -function inverse_inner_product(grid::EquidistantGrid, inv_closure_stencils, inv_inner_stencil) +function inverse_inner_product(grid::EquidistantGrid, interior_weight, closure_weights) H⁻¹s = () for i ∈ 1:dimension(grid) - H⁻¹s = (H⁻¹s..., inverse_inner_product(restrict(grid, i), inv_closure_stencils, inv_inner_stencil)) + H⁻¹s = (H⁻¹s..., inverse_inner_product(restrict(grid, i), interior_weight, closure_weights)) end return foldl(⊗, H⁻¹s) end -function inverse_inner_product(grid::EquidistantGrid{1}, inv_closure_stencils, inv_inner_stencil) - h⁻¹ = inverse_spacing(grid) - H⁻¹ = SbpOperators.volume_operator(grid, scale(inv_inner_stencil, h⁻¹[1]), scale.(inv_closure_stencils, h⁻¹[1]),even,1) +function inverse_inner_product(grid::EquidistantGrid{1}, interior_weight, closure_weights) + h⁻¹ = inverse_spacing(grid)[1] + H⁻¹ = SbpOperators.ConstantInteriorScalingOperator(grid, h⁻¹*1/interior_weight, h⁻¹./closure_weights) return H⁻¹ end export inverse_inner_product -inverse_inner_product(grid::EquidistantGrid{0}, inv_closure_stencils, inv_inner_stencil) = IdentityMapping{eltype(grid)}() - -reciprocal_stencil(s::Stencil{T}) where T = Stencil(s.range,one(T)./s.weights) +inverse_inner_product(grid::EquidistantGrid{0}, interior_weight, closure_weights) = IdentityMapping{eltype(grid)}()
--- a/test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl Sun Jul 25 14:39:41 2021 +0200 +++ b/test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl Sun Jul 25 14:58:50 2021 +0200 @@ -12,34 +12,38 @@ g_1D = EquidistantGrid(77, 0.0, Lx) g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) @testset "inverse_inner_product" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + quadrature_interior = parse_rational(stencil_set["H"]["inner"]) + quadrature_closure = parse_rational.(stencil_set["H"]["closure"]) @testset "0D" begin - Hi = inverse_inner_product(EquidistantGrid{Float64}(),SbpOperators.reciprocal_stencil.(op.quadratureClosure), CenteredStencil(1.)) + Hi = inverse_inner_product(EquidistantGrid{Float64}(), quadrature_interior, quadrature_closure) @test Hi == IdentityMapping{Float64}() @test Hi isa TensorMapping{T,0,0} where T end @testset "1D" begin - Hi = inverse_inner_product(g_1D, SbpOperators.reciprocal_stencil.(op.quadratureClosure), CenteredStencil(1.)); + Hi = inverse_inner_product(g_1D, quadrature_interior, quadrature_closure) @test Hi isa TensorMapping{T,1,1} where T end @testset "2D" begin - Hi = inverse_inner_product(g_2D,op.quadratureClosure, CenteredStencil(1.)) - Hi_x = inverse_inner_product(restrict(g_2D,1),op.quadratureClosure, CenteredStencil(1.)) - Hi_y = inverse_inner_product(restrict(g_2D,2),op.quadratureClosure, CenteredStencil(1.)) + Hi = inverse_inner_product(g_2D, quadrature_interior, quadrature_closure) + Hi_x = inverse_inner_product(restrict(g_2D,1), quadrature_interior, quadrature_closure) + Hi_y = inverse_inner_product(restrict(g_2D,2), quadrature_interior, quadrature_closure) @test Hi == Hi_x⊗Hi_y @test Hi isa TensorMapping{T,2,2} where T end end @testset "Sizes" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + quadrature_interior = parse_rational(stencil_set["H"]["inner"]) + quadrature_closure = parse_rational.(stencil_set["H"]["closure"]) @testset "1D" begin - Hi = inverse_inner_product(g_1D,op.quadratureClosure, CenteredStencil(1.)) + Hi = inverse_inner_product(g_1D, quadrature_interior, quadrature_closure) @test domain_size(Hi) == size(g_1D) @test range_size(Hi) == size(g_1D) end @testset "2D" begin - Hi = inverse_inner_product(g_2D,op.quadratureClosure, CenteredStencil(1.)) + Hi = inverse_inner_product(g_2D, quadrature_interior, quadrature_closure) @test domain_size(Hi) == size(g_2D) @test range_size(Hi) == size(g_2D) end @@ -50,16 +54,20 @@ v = evalOn(g_1D,x->sin(x)) u = evalOn(g_1D,x->x^3-x^2+1) @testset "2nd order" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - H = inner_product(g_1D, op.quadratureClosure, CenteredStencil(1.)) - Hi = inverse_inner_product(g_1D,SbpOperators.reciprocal_stencil.(op.quadratureClosure), CenteredStencil(1.)) + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) + quadrature_interior = parse_rational(stencil_set["H"]["inner"]) + quadrature_closure = parse_rational.(stencil_set["H"]["closure"]) + H = inner_product(g_1D, quadrature_interior, quadrature_closure) + Hi = inverse_inner_product(g_1D, quadrature_interior, quadrature_closure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end @testset "4th order" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - H = inner_product(g_1D, op.quadratureClosure, CenteredStencil(1.)) - Hi = inverse_inner_product(g_1D,SbpOperators.reciprocal_stencil.(op.quadratureClosure), CenteredStencil(1.)) + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + quadrature_interior = parse_rational(stencil_set["H"]["inner"]) + quadrature_closure = parse_rational.(stencil_set["H"]["closure"]) + H = inner_product(g_1D, quadrature_interior, quadrature_closure) + Hi = inverse_inner_product(g_1D, quadrature_interior, quadrature_closure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end @@ -68,16 +76,20 @@ v = evalOn(g_2D,(x,y)->sin(x)+cos(y)) u = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y)) @testset "2nd order" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - H = inner_product(g_2D, op.quadratureClosure, CenteredStencil(1.)) - Hi = inverse_inner_product(g_2D,SbpOperators.reciprocal_stencil.(op.quadratureClosure), CenteredStencil(1.)) + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) + quadrature_interior = parse_rational(stencil_set["H"]["inner"]) + quadrature_closure = parse_rational.(stencil_set["H"]["closure"]) + H = inner_product(g_2D, quadrature_interior, quadrature_closure) + Hi = inverse_inner_product(g_2D, quadrature_interior, quadrature_closure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end @testset "4th order" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - H = inner_product(g_2D, op.quadratureClosure, CenteredStencil(1.)) - Hi = inverse_inner_product(g_2D,SbpOperators.reciprocal_stencil.(op.quadratureClosure), CenteredStencil(1.)) + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + quadrature_interior = parse_rational(stencil_set["H"]["inner"]) + quadrature_closure = parse_rational.(stencil_set["H"]["closure"]) + H = inner_product(g_2D, quadrature_interior, quadrature_closure) + Hi = inverse_inner_product(g_2D, quadrature_interior, quadrature_closure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end