Mercurial > repos > public > sbplib_julia
changeset 190:8964b3165097 boundary_conditions
Break LazyTensors.jl into several files
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 20 Jun 2019 22:48:07 +0200 |
parents | e8e21db70112 |
children | 25d2ef206fe9 |
files | LazyTensors/src/LazyTensors.jl LazyTensors/src/lazy_operations.jl LazyTensors/src/tensor_mapping.jl |
diffstat | 3 files changed, 164 insertions(+), 165 deletions(-) [+] |
line wrap: on
line diff
--- a/LazyTensors/src/LazyTensors.jl Thu Jun 20 22:22:43 2019 +0200 +++ b/LazyTensors/src/LazyTensors.jl Thu Jun 20 22:48:07 2019 +0200 @@ -1,169 +1,6 @@ module LazyTensors - -""" - TensorMapping{T,R,D} - -Describes a mapping of a D dimension tensor to an R dimension tensor. -The action of the mapping is implemented through the method - - apply(t::TensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T} - -The size of range tensor should be dependent on the size of the domain tensor -and the type should implement the methods - - range_size(::TensorMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} - domain_size(::TensorMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} - -to allow querying for one or the other. - -Optionally the action of the transpose may be defined through - apply_transpose(t::TensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T} -""" -abstract type TensorMapping{T,R,D} end -export TensorMapping - -""" - apply(t::TensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T} - -Return the result of the mapping for a given index. -""" -function apply end -export apply - -""" - apply_transpose(t::TensorMapping{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {R,D,T} - -Return the result of the transposed mapping for a given index. -""" -function apply_transpose end -export apply_transpose - -""" -Return the dimension of the range space of a given mapping -""" -range_dim(::TensorMapping{T,R,D}) where {T,R,D} = R - -""" -Return the dimension of the domain space of a given mapping -""" -domain_dim(::TensorMapping{T,R,D}) where {T,R,D} = D - -export range_dim, domain_dim - -""" - range_size(M::TensorMapping, domain_size) - -Return the resulting range size for the mapping applied to a given domain_size -""" -function range_size end - -""" - domain_size(M::TensorMapping, range_size) - -Return the resulting domain size for the mapping applied to a given range_size -""" -function domain_size end - -export range_size, domain_size -# TODO: Think about boundschecking! - - -""" - TensorOperator{T,D} - -A `TensorMapping{T,D,D}` where the range and domain tensor have the same number of -dimensions and the same size. -""" -abstract type TensorOperator{T,D} <: TensorMapping{T,D,D} end -export TensorOperator -domain_size(::TensorOperator{T,D}, range_size::NTuple{D,Integer}) where {T,D} = range_size -range_size(::TensorOperator{T,D}, domain_size::NTuple{D,Integer}) where {T,D} = domain_size - - - -""" - LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R} - -Struct for lazy transpose of a TensorMapping. - -If a mapping implements the the `apply_transpose` method this allows working with -the transpose of mapping `m` by using `m'`. `m'` will work as a regular TensorMapping lazily calling -the appropriate methods of `m`. -""" -struct LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R} - tm::TensorMapping{T,R,D} -end -export LazyTensorMappingTranspose - -# # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors? -Base.adjoint(t::TensorMapping) = LazyTensorMappingTranspose(t) -Base.adjoint(t::LazyTensorMappingTranspose) = t.tm - -apply(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {T,R,D} = apply_transpose(tm.tm, v, I...) -apply_transpose(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,D} = apply(tm.tm, v, I...) - -range_size(tmt::LazyTensorMappingTranspose{T,R,D}, d_size::NTuple{R,Integer}) where {T,R,D} = domain_size(tmt.tm, domain_size) -domain_size(tmt::LazyTensorMappingTranspose{T,R,D}, r_size::NTuple{D,Integer}) where {T,R,D} = range_size(tmt.tm, range_size) - - -""" - LazyTensorMappingApplication{T,R,D} <: AbstractArray{T,R} - -Struct for lazy application of a TensorMapping. Created using `*`. - -Allows the result of a `TensorMapping` applied to a vector to be treated as an `AbstractArray`. -With a mapping `m` and a vector `v` the LazyTensorMappingApplication object can be created by `m*v`. -The actual result will be calcualted when indexing into `m*v`. -""" -struct LazyTensorMappingApplication{T,R,D} <: AbstractArray{T,R} - t::TensorMapping{T,R,D} - o::AbstractArray{T,D} -end -export LazyTensorMappingApplication - -Base.:*(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) - -Base.getindex(ta::LazyTensorMappingApplication{T,R,D}, I::Vararg) where {T,R,D} = apply(ta.t, ta.o, I...) -Base.size(ta::LazyTensorMappingApplication{T,R,D}) where {T,R,D} = range_size(ta.t,size(ta.o)) -# TODO: What else is needed to implement the AbstractArray interface? - - -# # We need the associativity to be a→b→c = a→(b→c), which is the case for '→' -Base.:*(args::Union{TensorMapping{T}, AbstractArray{T}}...) where T = foldr(*,args) -# # Should we overload some other infix binary operator? -# →(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) -# TODO: We need to be really careful about good error messages. -# For example what happens if you try to multiply LazyTensorMappingApplication with a TensorMapping(wrong order)? - - - -# struct LazyTensorMappingComposition{T,R,K,D} <: TensorMapping{T,R,D} -# t1::TensorMapping{T,R,K} -# t2::TensorMapping{T,K,D} -# end - -# Base.:∘(s::TensorMapping{T,R,K}, t::TensorMapping{T,K,D}) where {T,R,K,D} = LazyTensorMappingComposition(s,t) - -# function range_size(tm::LazyTensorMappingComposition{T,R,K,D}, domain_size::NTuple{D,Integer}) where {T,R,K,D} -# range_size(tm.t1, domain_size(tm.t2, domain_size)) -# end - -# function domain_size(tm::LazyTensorMappingComposition{T,R,K,D}, range_size::NTuple{R,Integer}) where {T,R,K,D} -# domain_size(tm.t1, domain_size(tm.t2, range_size)) -# end - -# function apply(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D} -# apply(c.t1, LazyTensorMappingApplication(c.t2,v), I...) -# end - -# function apply_transpose(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D} -# apply_transpose(c.t2, LazyTensorMappingApplication(c.t1',v), I...) -# end - -# # Have i gone too crazy with the type parameters? Maybe they aren't all needed? - -# export → - +include("tensor_mapping.jl") +include("lazy_operations.jl") end # module
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LazyTensors/src/lazy_operations.jl Thu Jun 20 22:48:07 2019 +0200 @@ -0,0 +1,84 @@ +""" + LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R} + +Struct for lazy transpose of a TensorMapping. + +If a mapping implements the the `apply_transpose` method this allows working with +the transpose of mapping `m` by using `m'`. `m'` will work as a regular TensorMapping lazily calling +the appropriate methods of `m`. +""" +struct LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R} + tm::TensorMapping{T,R,D} +end +export LazyTensorMappingTranspose + +# # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors? +Base.adjoint(t::TensorMapping) = LazyTensorMappingTranspose(t) +Base.adjoint(t::LazyTensorMappingTranspose) = t.tm + +apply(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {T,R,D} = apply_transpose(tm.tm, v, I...) +apply_transpose(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,D} = apply(tm.tm, v, I...) + +range_size(tmt::LazyTensorMappingTranspose{T,R,D}, d_size::NTuple{R,Integer}) where {T,R,D} = domain_size(tmt.tm, domain_size) +domain_size(tmt::LazyTensorMappingTranspose{T,R,D}, r_size::NTuple{D,Integer}) where {T,R,D} = range_size(tmt.tm, range_size) + + + +""" + LazyTensorMappingApplication{T,R,D} <: AbstractArray{T,R} + +Struct for lazy application of a TensorMapping. Created using `*`. + +Allows the result of a `TensorMapping` applied to a vector to be treated as an `AbstractArray`. +With a mapping `m` and a vector `v` the LazyTensorMappingApplication object can be created by `m*v`. +The actual result will be calcualted when indexing into `m*v`. +""" +struct LazyTensorMappingApplication{T,R,D} <: AbstractArray{T,R} + t::TensorMapping{T,R,D} + o::AbstractArray{T,D} +end +export LazyTensorMappingApplication + +Base.:*(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) + +Base.getindex(ta::LazyTensorMappingApplication{T,R,D}, I::Vararg) where {T,R,D} = apply(ta.t, ta.o, I...) +Base.size(ta::LazyTensorMappingApplication{T,R,D}) where {T,R,D} = range_size(ta.t,size(ta.o)) +# TODO: What else is needed to implement the AbstractArray interface? + + +# # We need the associativity to be a→b→c = a→(b→c), which is the case for '→' +Base.:*(args::Union{TensorMapping{T}, AbstractArray{T}}...) where T = foldr(*,args) +# # Should we overload some other infix binary operator? +# →(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) +# TODO: We need to be really careful about good error messages. +# For example what happens if you try to multiply LazyTensorMappingApplication with a TensorMapping(wrong order)? + + + +# TODO: Write tests and documentation for LazyTensorMappingComposition +# struct LazyTensorMappingComposition{T,R,K,D} <: TensorMapping{T,R,D} +# t1::TensorMapping{T,R,K} +# t2::TensorMapping{T,K,D} +# end + +# Base.:∘(s::TensorMapping{T,R,K}, t::TensorMapping{T,K,D}) where {T,R,K,D} = LazyTensorMappingComposition(s,t) + +# function range_size(tm::LazyTensorMappingComposition{T,R,K,D}, domain_size::NTuple{D,Integer}) where {T,R,K,D} +# range_size(tm.t1, domain_size(tm.t2, domain_size)) +# end + +# function domain_size(tm::LazyTensorMappingComposition{T,R,K,D}, range_size::NTuple{R,Integer}) where {T,R,K,D} +# domain_size(tm.t1, domain_size(tm.t2, range_size)) +# end + +# function apply(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D} +# apply(c.t1, LazyTensorMappingApplication(c.t2,v), I...) +# end + +# function apply_transpose(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D} +# apply_transpose(c.t2, LazyTensorMappingApplication(c.t1',v), I...) +# end + +# # Have i gone too crazy with the type parameters? Maybe they aren't all needed? + +# export →
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LazyTensors/src/tensor_mapping.jl Thu Jun 20 22:48:07 2019 +0200 @@ -0,0 +1,78 @@ +""" + TensorMapping{T,R,D} + +Describes a mapping of a D dimension tensor to an R dimension tensor. +The action of the mapping is implemented through the method + + apply(t::TensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T} + +The size of range tensor should be dependent on the size of the domain tensor +and the type should implement the methods + + range_size(::TensorMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} + domain_size(::TensorMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} + +to allow querying for one or the other. + +Optionally the action of the transpose may be defined through + apply_transpose(t::TensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T} +""" +abstract type TensorMapping{T,R,D} end +export TensorMapping + +""" + apply(t::TensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T} + +Return the result of the mapping for a given index. +""" +function apply end +export apply + +""" + apply_transpose(t::TensorMapping{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {R,D,T} + +Return the result of the transposed mapping for a given index. +""" +function apply_transpose end +export apply_transpose + +""" +Return the dimension of the range space of a given mapping +""" +range_dim(::TensorMapping{T,R,D}) where {T,R,D} = R + +""" +Return the dimension of the domain space of a given mapping +""" +domain_dim(::TensorMapping{T,R,D}) where {T,R,D} = D + +export range_dim, domain_dim + +""" + range_size(M::TensorMapping, domain_size) + +Return the resulting range size for the mapping applied to a given domain_size +""" +function range_size end + +""" + domain_size(M::TensorMapping, range_size) + +Return the resulting domain size for the mapping applied to a given range_size +""" +function domain_size end + +export range_size, domain_size +# TODO: Think about boundschecking! + + +""" + TensorOperator{T,D} + +A `TensorMapping{T,D,D}` where the range and domain tensor have the same number of +dimensions and the same size. +""" +abstract type TensorOperator{T,D} <: TensorMapping{T,D,D} end +export TensorOperator +domain_size(::TensorOperator{T,D}, range_size::NTuple{D,Integer}) where {T,D} = range_size +range_size(::TensorOperator{T,D}, domain_size::NTuple{D,Integer}) where {T,D} = domain_size