Mercurial > repos > public > sbplib_julia
changeset 51:614b56a017b9
Split grid.jl into AbstractGrid.jl and EquidistantGrid.jl
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 11 Jan 2019 11:55:13 +0100 |
parents | 50c6c252d954 |
children | 0236f8e90567 |
files | AbstractGrid.jl EquidistantGrid.jl grid.jl plotDerivative.jl |
diffstat | 4 files changed, 143 insertions(+), 137 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/AbstractGrid.jl Fri Jan 11 11:55:13 2019 +0100 @@ -0,0 +1,19 @@ +abstract type AbstractGrid end + +function numberOfDimensions(grid::AbstractGrid) + error("Not implemented for abstact type AbstractGrid") +end + +function numberOfPoints(grid::AbstractGrid) + error("Not implemented for abstact type AbstractGrid") +end + +function points(grid::AbstractGrid) + error("Not implemented for abstact type AbstractGrid") +end + +# Evaluate function f on the grid g +function evalOn(g::AbstractGrid, f::Function) + F(x) = f(x...) + return F.(points(g)) +end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/EquidistantGrid.jl Fri Jan 11 11:55:13 2019 +0100 @@ -0,0 +1,119 @@ +# EquidistantGrid is a grid with equidistant grid spacing per coordinat +# direction. The domain is defined through the two points P1 = x̄₁, P2 = x̄₂ +# by the exterior product of the vectors obtained by projecting (x̄₂-x̄₁) onto +# the coordinate directions. E.g for a 2D grid with x̄₁=(-1,0) and x̄₂=(1,2) +# the domain is defined as (-1,1)x(0,2). +struct EquidistantGrid <: AbstractGrid + numberOfPointsPerDim::Tuple # First coordinate direction stored first, then + # second, then third. + limits::NTuple{2,Tuple} # Stores the two points which defines the range of + # the e.g (-1,0) and (1,2) for a domain of size + # (-1,1)x(0,2) + + # General constructor + function EquidistantGrid(nPointsPerDim::Tuple, lims::NTuple{2,Tuple}) + @assert length(nPointsPerDim) > 0 + @assert count(x -> x > 0, nPointsPerDim) == length(nPointsPerDim) + @assert length(lims[1]) == length(nPointsPerDim) + @assert length(lims[2]) == length(nPointsPerDim) + # TODO: Assert that the same values are not passed in both lims[1] and lims[2] + # i.e the domain length is positive for all dimensions + return new(nPointsPerDim, lims) + end + # 1D constructor which can be called as EquidistantGrid(m, (xl,xr)) + function EquidistantGrid(nPointsPerDim::Integer, lims::NTuple{2,Real}) + return EquidistantGrid((nPointsPerDim,), ((lims[1],),(lims[2],))) + end + +end + +# Returns the number of dimensions of an EquidistantGrid. +# +# @Input: grid - an EquidistantGrid +# @Return: numberOfPoints - The number of dimensions +function numberOfDimensions(grid::EquidistantGrid) + return length(grid.numberOfPointsPerDim) +end + +# Computes the total number of points of an EquidistantGrid. +# +# @Input: grid - an EquidistantGrid +# @Return: numberOfPoints - The total number of points +function numberOfPoints(grid::EquidistantGrid) + numberOfPoints = grid.numberOfPointsPerDim[1]; + for i = 2:length(grid.numberOfPointsPerDim); + numberOfPoints = numberOfPoints*grid.numberOfPointsPerDim[i] + end + return numberOfPoints +end + +# Computes the grid spacing of an EquidistantGrid, i.e the unsigned distance +# between two points for each coordinate direction. +# +# @Input: grid - an EquidistantGrid +# @Return: h̄ - Grid spacing for each coordinate direction stored in a tuple. +function spacings(grid::EquidistantGrid) + h̄ = Vector{Real}(undef, numberOfDimensions(grid)) + for i ∈ eachindex(h̄) + h̄[i] = abs(grid.limits[2][i]-grid.limits[1][i])/(grid.numberOfPointsPerDim[i]-1) + end + return Tuple(h̄) +end + +# Computes the points of an EquidistantGrid as a vector of tuples. The vector is ordered +# such that points in the first coordinate direction varies first, then the second +# and lastely the third (if applicable) +# +# @Input: grid - an EquidistantGrid +# @Return: points - the points of the grid. +function points(grid::EquidistantGrid) + # Compute signed grid spacings + dx̄ = Vector{Real}(undef, numberOfDimensions(grid)) + for i ∈ eachindex(dx̄) + dx̄[i] = (grid.limits[2][i]-grid.limits[1][i])/(grid.numberOfPointsPerDim[i]-1) + end + dx̄ = Tuple(dx̄) + + points = Vector{NTuple{numberOfDimensions(grid),Real}}(undef, numberOfPoints(grid)) + # Compute the points based on their Cartesian indices and the signed + # grid spacings + cartesianIndices = CartesianIndices(grid.numberOfPointsPerDim) + for i ∈ 1:numberOfPoints(grid) + ci = Tuple(cartesianIndices[i]) .-1 + points[i] = grid.limits[1] .+ dx̄.*ci + end + # TBD: Keep? this? How do we want to represent points in 1D? + if numberOfDimensions(grid) == 1 + points = broadcast(x -> x[1], points) + end + return points +end + +function pointsalongdim(grid::EquidistantGrid, dim::Integer) + @assert dim<=numberOfDimensions(grid) + @assert dim>0 + points = range(grid.limits[1][dim],stop=grid.limits[2][dim],length=grid.numberOfPointsPerDim[dim]) +end + +using PyPlot, PyCall +# using Plots; pyplot() + +function plotgridfunction(grid::EquidistantGrid, gridfunction) + if numberOfDimensions(grid) == 1 + plot(pointsalongdim(grid,1), gridfunction, linewidth=2.0) + elseif numberOfDimensions(grid) == 2 + mx = grid.numberOfPointsPerDim[1]; + my = grid.numberOfPointsPerDim[2]; + x = pointsalongdim(grid,1) + X = repeat(x,1,my) + y = pointsalongdim(grid,2) + Y = repeat(y,1,mx) + # plot_surface(X,Y,reshape(gridfunction,mx,my)) + fig = figure() + ax = fig[:add_subplot](1,1,1, projection = "3d") + ax[:plot_surface](X,Y,reshape(gridfunction,mx,my)) + plt[:show]() + else + error(string("Plot not implemented for dimension ", string(numberOfDimensions(grid)))) + end +end
--- a/grid.jl Thu Jan 10 17:39:42 2019 +0100 +++ b/grid.jl Fri Jan 11 11:55:13 2019 +0100 @@ -1,141 +1,9 @@ -module grid -using Plots -pyplot() - -abstract type Grid end - -function numberOfDimensions(grid::Grid) - error("Not implemented for abstact type Grid") -end +module Grid -function numberOfPoints(grid::Grid) - error("Not implemented for abstact type Grid") -end - -function points(grid::Grid) - error("Not implemented for abstact type Grid") -end - -# TODO: Should this be here? +# TODO: Where is this used? abstract type BoundaryId end -# EquidistantGrid is a grid with equidisant grid spacing per coordinat -# direction. The domain is defined through the two points P1 = x̄₁, P2 = x̄₂ -# by the exterior product of the vectors obtained by projecting (x̄₂-x̄₁) onto -# the coordinate directions. E.g for a 2D grid with x̄₁=(-1,0) and x̄₂=(1,2) -# the domain is defined as (-1,1)x(0,2). -struct EquidistantGrid <: Grid - numberOfPointsPerDim::Tuple # First coordinate direction stored first, then - # second, then third. - limits::NTuple{2,Tuple} # Stores the two points which defines the range of - # the e.g (-1,0) and (1,2) for a domain of size - # (-1,1)x(0,2) - - # General constructor - function EquidistantGrid(nPointsPerDim::Tuple, lims::NTuple{2,Tuple}) - @assert length(nPointsPerDim) > 0 - @assert count(x -> x > 0, nPointsPerDim) == length(nPointsPerDim) - @assert length(lims[1]) == length(nPointsPerDim) - @assert length(lims[2]) == length(nPointsPerDim) - # TODO: Assert that the same values are not passed in both lims[1] and lims[2] - # i.e the domain length is positive for all dimensions - return new(nPointsPerDim, lims) - end - # 1D constructor which can be called as EquidistantGrid(m, (xl,xr)) - function EquidistantGrid(nPointsPerDim::Integer, lims::NTuple{2,Real}) - return EquidistantGrid((nPointsPerDim,), ((lims[1],),(lims[2],))) - end +include("AbstractGrid.jl") +include("EquidistantGrid.jl") end - -# Returns the number of dimensions of an EquidistantGrid. -# -# @Input: grid - an EquidistantGrid -# @Return: numberOfPoints - The number of dimensions -function numberOfDimensions(grid::EquidistantGrid) - return length(grid.numberOfPointsPerDim) -end - -# Computes the total number of points of an EquidistantGrid. -# -# @Input: grid - an EquidistantGrid -# @Return: numberOfPoints - The total number of points -function numberOfPoints(grid::EquidistantGrid) - numberOfPoints = grid.numberOfPointsPerDim[1]; - for i = 2:length(grid.numberOfPointsPerDim); - numberOfPoints = numberOfPoints*grid.numberOfPointsPerDim[i] - end - return numberOfPoints -end - -# Computes the grid spacing of an EquidistantGrid, i.e the unsigned distance -# between two points for each coordinate direction. -# -# @Input: grid - an EquidistantGrid -# @Return: h̄ - Grid spacing for each coordinate direction stored in a tuple. -function spacings(grid::EquidistantGrid) - h̄ = Vector{Real}(undef, numberOfDimensions(grid)) - for i ∈ eachindex(h̄) - h̄[i] = abs(grid.limits[2][i]-grid.limits[1][i])/(grid.numberOfPointsPerDim[i]-1) - end - return Tuple(h̄) -end - -# Computes the points of an EquidistantGrid as a vector of tuples. The vector is ordered -# such that points in the first coordinate direction varies first, then the second -# and lastely the third (if applicable) -# -# @Input: grid - an EquidistantGrid -# @Return: points - the points of the grid. -function points(grid::EquidistantGrid) - # Compute signed grid spacings - dx̄ = Vector{Real}(undef, numberOfDimensions(grid)) - for i ∈ eachindex(dx̄) - dx̄[i] = (grid.limits[2][i]-grid.limits[1][i])/(grid.numberOfPointsPerDim[i]-1) - end - dx̄ = Tuple(dx̄) - - points = Vector{NTuple{numberOfDimensions(grid),Real}}(undef, numberOfPoints(grid)) - # Compute the points based on their Cartesian indices and the signed - # grid spacings - cartesianIndices = CartesianIndices(grid.numberOfPointsPerDim) - for i ∈ 1:numberOfPoints(grid) - ci = Tuple(cartesianIndices[i]) .-1 - points[i] = grid.limits[1] .+ dx̄.*ci - end - # TBD: Keep? this? How do we want to represent points in 1D? - if numberOfDimensions(grid) == 1 - points = broadcast(x -> x[1], points) - end - return points -end - -function pointsalongdim(grid::EquidistantGrid, dim::Integer) - @assert dim<=numberOfDimensions(grid) - @assert dim>0 - points = range(grid.limits[1][dim],stop=grid.limits[2][dim],length=grid.numberOfPointsPerDim[dim]) -end - -function plotgridfunction(grid::EquidistantGrid, gridfunction) - if numberOfDimensions(grid) == 1 - plot(pointsalongdim(grid,1), gridfunction, linewidth=2.0) - elseif numberOfDimensions(grid) == 2 - mx = grid.numberOfPointsPerDim[1]; - my = grid.numberOfPointsPerDim[2]; - x = pointsalongdim(grid,1) - X = repeat(x,1,my) - y = pointsalongdim(grid,2) - Y = repeat(y,1,mx)' - surface(X,Y,reshape(gridfunction,mx,my)) - else - error(string("Plot not implemented for dimension ", string(numberOfDimensions(grid)))) - end -end - -# Evaluate function f on the grid g -function evalOn(g::Grid, f::Function) - F(x) = f(x...) - return F.(points(g)) -end - -end