changeset 699:40f2999f57b2 refactor/operator_naming

Rename folders and files from quadrature to inner_product
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Sun, 14 Feb 2021 13:56:43 +0100
parents 5ddf28ddee18
children 75b0c1a19fae
files src/SbpOperators/SbpOperators.jl src/SbpOperators/volumeops/inner_products/inner_product.jl src/SbpOperators/volumeops/inner_products/inverse_inner_product.jl src/SbpOperators/volumeops/quadratures/inverse_quadrature.jl src/SbpOperators/volumeops/quadratures/quadrature.jl
diffstat 5 files changed, 74 insertions(+), 74 deletions(-) [+]
line wrap: on
line diff
--- a/src/SbpOperators/SbpOperators.jl	Sun Feb 14 13:52:13 2021 +0100
+++ b/src/SbpOperators/SbpOperators.jl	Sun Feb 14 13:56:43 2021 +0100
@@ -10,8 +10,8 @@
 include("volumeops/volume_operator.jl")
 include("volumeops/derivatives/secondderivative.jl")
 include("volumeops/laplace/laplace.jl")
-include("volumeops/quadratures/quadrature.jl")
-include("volumeops/quadratures/inverse_quadrature.jl")
+include("volumeops/inner_products/inner_product.jl")
+include("volumeops/inner_products/inverse_inner_product.jl")
 include("boundaryops/boundary_operator.jl")
 include("boundaryops/boundary_restriction.jl")
 include("boundaryops/normal_derivative.jl")
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/volumeops/inner_products/inner_product.jl	Sun Feb 14 13:56:43 2021 +0100
@@ -0,0 +1,29 @@
+"""
+    inner_product(grid::EquidistantGrid, closure_stencils, inner_stencil)
+
+Creates the discrete inner product operator `H` as a `TensorMapping` on an equidistant
+grid, defined as `(u,v)  = u'Hv` for grid functions `u,v`.
+
+`inner_product(grid::EquidistantGrid, closure_stencils, inner_stencil)` creates
+`H` on `grid` the using a set of stencils `closure_stencils` for the points in
+the closure regions and the stencil and `inner_stencil` in the interior. If
+`inner_stencil` is omitted a central interior stencil with weight 1 is used.
+
+On a 1-dimensional `grid`, `H` is a `VolumeOperator`. On a N-dimensional
+`grid`, `H` is the outer product of the 1-dimensional inner product operators in
+each coordinate direction. Also see the documentation of
+`SbpOperators.volume_operator(...)` for more details. On a 0-dimensional `grid`,
+`H` is a 0-dimensional `IdentityMapping`.
+"""
+function inner_product(grid::EquidistantGrid, closure_stencils, inner_stencil = CenteredStencil(one(eltype(grid))))
+    h = spacing(grid)
+    H = SbpOperators.volume_operator(grid, scale(inner_stencil,h[1]), scale.(closure_stencils,h[1]), even, 1)
+    for i ∈ 2:dimension(grid)
+        Hᵢ = SbpOperators.volume_operator(grid, scale(inner_stencil,h[i]), scale.(closure_stencils,h[i]), even, i)
+        H = H∘Hᵢ
+    end
+    return H
+end
+export inner_product
+
+inner_product(grid::EquidistantGrid{0}, closure_stencils, inner_stencil) = IdentityMapping{eltype(grid)}()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/volumeops/inner_products/inverse_inner_product.jl	Sun Feb 14 13:56:43 2021 +0100
@@ -0,0 +1,43 @@
+"""
+    inverse_inner_product(grid::EquidistantGrid, inv_inner_stencil, inv_closure_stencils)
+    inverse_inner_product(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T,1}})
+
+Creates the inverse inner product operator `H⁻¹` as a `TensorMapping` on an
+equidistant grid. `H⁻¹` is defined implicitly by `H⁻¹∘H = I`, where
+`H` is the corresponding inner product operator and `I` is the `IdentityMapping`.
+
+`inverse_inner_product(grid::EquidistantGrid, inv_inner_stencil, inv_closure_stencils)`
+constructs `H⁻¹` using a set of stencils `inv_closure_stencils` for the points
+in the closure regions and the stencil `inv_inner_stencil` in the interior. If
+`inv_closure_stencils` is omitted, a central interior stencil with weight 1 is used.
+
+`inverse_inner_product(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T,1}})`
+constructs a diagonal inverse inner product operator where `closure_stencils` are the
+closure stencils of `H` (not `H⁻¹`!).
+
+On a 1-dimensional `grid`, `H⁻¹` is a `VolumeOperator`. On a N-dimensional
+`grid`, `H⁻¹` is the outer product of the 1-dimensional inverse inner product
+operators in each coordinate direction. Also see the documentation of
+`SbpOperators.volume_operator(...)` for more details. On a 0-dimensional `grid`,
+`H⁻¹` is a 0-dimensional `IdentityMapping`.
+"""
+function inverse_inner_product(grid::EquidistantGrid, inv_closure_stencils, inv_inner_stencil = CenteredStencil(one(eltype(grid))))
+    h⁻¹ = inverse_spacing(grid)
+    H⁻¹ = SbpOperators.volume_operator(grid,scale(inv_inner_stencil,h⁻¹[1]),scale.(inv_closure_stencils,h⁻¹[1]),even,1)
+    for i ∈ 2:dimension(grid)
+        Hᵢ⁻¹ = SbpOperators.volume_operator(grid,scale(inv_inner_stencil,h⁻¹[i]),scale.(inv_closure_stencils,h⁻¹[i]),even,i)
+        H⁻¹ = H⁻¹∘Hᵢ⁻¹
+    end
+    return H⁻¹
+end
+export inverse_inner_product
+
+inverse_inner_product(grid::EquidistantGrid{0}, inv_closure_stencils, inv_inner_stencil) = IdentityMapping{eltype(grid)}()
+
+function inverse_inner_product(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T,1}}) where {M,T}
+     inv_closure_stencils = reciprocal_stencil.(closure_stencils)
+     inv_inner_stencil = CenteredStencil(one(T))
+     return inverse_inner_product(grid, inv_closure_stencils, inv_inner_stencil)
+end
+
+reciprocal_stencil(s::Stencil{T}) where T = Stencil(s.range,one(T)./s.weights)
--- a/src/SbpOperators/volumeops/quadratures/inverse_quadrature.jl	Sun Feb 14 13:52:13 2021 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,43 +0,0 @@
-"""
-    inverse_inner_product(grid::EquidistantGrid, inv_inner_stencil, inv_closure_stencils)
-    inverse_inner_product(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T,1}})
-
-Creates the inverse inner product operator `H⁻¹` as a `TensorMapping` on an
-equidistant grid. `H⁻¹` is defined implicitly by `H⁻¹∘H = I`, where
-`H` is the corresponding inner product operator and `I` is the `IdentityMapping`.
-
-`inverse_inner_product(grid::EquidistantGrid, inv_inner_stencil, inv_closure_stencils)`
-constructs `H⁻¹` using a set of stencils `inv_closure_stencils` for the points
-in the closure regions and the stencil `inv_inner_stencil` in the interior. If
-`inv_closure_stencils` is omitted, a central interior stencil with weight 1 is used.
-
-`inverse_inner_product(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T,1}})`
-constructs a diagonal inverse inner product operator where `closure_stencils` are the
-closure stencils of `H` (not `H⁻¹`!).
-
-On a 1-dimensional `grid`, `H⁻¹` is a `VolumeOperator`. On a N-dimensional
-`grid`, `H⁻¹` is the outer product of the 1-dimensional inverse inner product
-operators in each coordinate direction. Also see the documentation of
-`SbpOperators.volume_operator(...)` for more details. On a 0-dimensional `grid`,
-`H⁻¹` is a 0-dimensional `IdentityMapping`.
-"""
-function inverse_inner_product(grid::EquidistantGrid, inv_closure_stencils, inv_inner_stencil = CenteredStencil(one(eltype(grid))))
-    h⁻¹ = inverse_spacing(grid)
-    H⁻¹ = SbpOperators.volume_operator(grid,scale(inv_inner_stencil,h⁻¹[1]),scale.(inv_closure_stencils,h⁻¹[1]),even,1)
-    for i ∈ 2:dimension(grid)
-        Hᵢ⁻¹ = SbpOperators.volume_operator(grid,scale(inv_inner_stencil,h⁻¹[i]),scale.(inv_closure_stencils,h⁻¹[i]),even,i)
-        H⁻¹ = H⁻¹∘Hᵢ⁻¹
-    end
-    return H⁻¹
-end
-export inverse_inner_product
-
-inverse_inner_product(grid::EquidistantGrid{0}, inv_closure_stencils, inv_inner_stencil) = IdentityMapping{eltype(grid)}()
-
-function inverse_inner_product(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T,1}}) where {M,T}
-     inv_closure_stencils = reciprocal_stencil.(closure_stencils)
-     inv_inner_stencil = CenteredStencil(one(T))
-     return inverse_inner_product(grid, inv_closure_stencils, inv_inner_stencil)
-end
-
-reciprocal_stencil(s::Stencil{T}) where T = Stencil(s.range,one(T)./s.weights)
--- a/src/SbpOperators/volumeops/quadratures/quadrature.jl	Sun Feb 14 13:52:13 2021 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,29 +0,0 @@
-"""
-    inner_product(grid::EquidistantGrid, closure_stencils, inner_stencil)
-
-Creates the discrete inner product operator `H` as a `TensorMapping` on an equidistant
-grid, defined as `(u,v)  = u'Hv` for grid functions `u,v`.
-
-`inner_product(grid::EquidistantGrid, closure_stencils, inner_stencil)` creates
-`H` on `grid` the using a set of stencils `closure_stencils` for the points in
-the closure regions and the stencil and `inner_stencil` in the interior. If
-`inner_stencil` is omitted a central interior stencil with weight 1 is used.
-
-On a 1-dimensional `grid`, `H` is a `VolumeOperator`. On a N-dimensional
-`grid`, `H` is the outer product of the 1-dimensional inner product operators in
-each coordinate direction. Also see the documentation of
-`SbpOperators.volume_operator(...)` for more details. On a 0-dimensional `grid`,
-`H` is a 0-dimensional `IdentityMapping`.
-"""
-function inner_product(grid::EquidistantGrid, closure_stencils, inner_stencil = CenteredStencil(one(eltype(grid))))
-    h = spacing(grid)
-    H = SbpOperators.volume_operator(grid, scale(inner_stencil,h[1]), scale.(closure_stencils,h[1]), even, 1)
-    for i ∈ 2:dimension(grid)
-        Hᵢ = SbpOperators.volume_operator(grid, scale(inner_stencil,h[i]), scale.(closure_stencils,h[i]), even, i)
-        H = H∘Hᵢ
-    end
-    return H
-end
-export inner_product
-
-inner_product(grid::EquidistantGrid{0}, closure_stencils, inner_stencil) = IdentityMapping{eltype(grid)}()