changeset 947:38d1752a9aff feature/laplace_opset

Reformat "See also:"
author Jonatan Werpers <jonatan@werpers.com>
date Sun, 13 Mar 2022 21:01:09 +0100
parents 22c80fb36400
children 1484073dfe27
files src/SbpOperators/boundaryops/boundary_restriction.jl src/SbpOperators/boundaryops/normal_derivative.jl src/SbpOperators/volumeops/derivatives/second_derivative.jl src/SbpOperators/volumeops/inner_products/inner_product.jl src/SbpOperators/volumeops/inner_products/inverse_inner_product.jl src/SbpOperators/volumeops/laplace/laplace.jl
diffstat 6 files changed, 18 insertions(+), 9 deletions(-) [+]
line wrap: on
line diff
--- a/src/SbpOperators/boundaryops/boundary_restriction.jl	Fri Feb 25 17:20:40 2022 +0100
+++ b/src/SbpOperators/boundaryops/boundary_restriction.jl	Sun Mar 13 21:01:09 2022 +0100
@@ -6,7 +6,9 @@
 `e` is the restriction of a grid function to `boundary` using a `Stencil` `closure_stencil`.
 `e'` is the prolongation of a grid function on `boundary` to the whole grid using the same `closure_stencil`.
 On a one-dimensional `grid`, `e` is a `BoundaryOperator`. On a multi-dimensional `grid`, `e` is the inflation of
-a `BoundaryOperator`. See also [`boundary_operator`](@ref).
+a `BoundaryOperator`.
+
+See also: [`boundary_operator`](@ref).
 """
 function boundary_restriction(grid, closure_stencil::Stencil, boundary)
     converted_stencil = convert(Stencil{eltype(grid)}, closure_stencil)
--- a/src/SbpOperators/boundaryops/normal_derivative.jl	Fri Feb 25 17:20:40 2022 +0100
+++ b/src/SbpOperators/boundaryops/normal_derivative.jl	Sun Mar 13 21:01:09 2022 +0100
@@ -6,7 +6,9 @@
 `d` computes the normal derivative of a grid function  on `boundary` a `Stencil` `closure_stencil`.
 `d'` is the prolongation of the normal derivative of a grid function to the whole grid using the same `closure_stencil`.
 On a one-dimensional `grid`, `d` is a `BoundaryOperator`. On a multi-dimensional `grid`, `d` is the inflation of
-a `BoundaryOperator`. See also [`boundary_operator`](@ref).
+a `BoundaryOperator`.
+
+See also: [`boundary_operator`](@ref).
 """
 function normal_derivative(grid, closure_stencil::Stencil, boundary)
     direction = dim(boundary)
--- a/src/SbpOperators/volumeops/derivatives/second_derivative.jl	Fri Feb 25 17:20:40 2022 +0100
+++ b/src/SbpOperators/volumeops/derivatives/second_derivative.jl	Sun Mar 13 21:01:09 2022 +0100
@@ -9,7 +9,8 @@
 
 On a one-dimensional `grid`, `D2` is a `VolumeOperator`. On a multi-dimensional `grid`, `D2` is the outer product of the
 one-dimensional operator with the `IdentityMapping`s in orthogonal coordinate dirrections.
-See also [`volume_operator`](@ref).
+
+See also: [`volume_operator`](@ref).
 """
 function second_derivative(grid::EquidistantGrid, inner_stencil, closure_stencils, direction)
     h_inv = inverse_spacing(grid)[direction]
--- a/src/SbpOperators/volumeops/inner_products/inner_product.jl	Fri Feb 25 17:20:40 2022 +0100
+++ b/src/SbpOperators/volumeops/inner_products/inner_product.jl	Sun Mar 13 21:01:09 2022 +0100
@@ -12,7 +12,8 @@
 N-dimensional grid, `H` is the outer product of the 1-dimensional inner
 product operators for each coordinate direction. On a 0-dimensional grid,
 `H` is a 0-dimensional `IdentityMapping`.
-See also [`ConstantInteriorScalingOperator`](@ref).
+
+See also: [`ConstantInteriorScalingOperator`](@ref).
 """
 function inner_product(grid::EquidistantGrid, interior_weight, closure_weights)
     Hs = ()
@@ -43,4 +44,4 @@
     inner_stencil = parse_scalar(stencil_set["H"]["inner"])
     closure_stencils = parse_tuple(stencil_set["H"]["closure"])
     return inner_product(grid, inner_stencil, closure_stencils)
-end
\ No newline at end of file
+end
--- a/src/SbpOperators/volumeops/inner_products/inverse_inner_product.jl	Fri Feb 25 17:20:40 2022 +0100
+++ b/src/SbpOperators/volumeops/inner_products/inverse_inner_product.jl	Sun Mar 13 21:01:09 2022 +0100
@@ -9,7 +9,8 @@
 N-dimensional grid, `H⁻¹` is the outer product of the 1-dimensional inverse
 inner product operators for each coordinate direction. On a 0-dimensional
 `grid`, `H⁻¹` is a 0-dimensional `IdentityMapping`. 
-See also [`ConstantInteriorScalingOperator`](@ref).
+
+See also: [`ConstantInteriorScalingOperator`](@ref).
 """
 function inverse_inner_product(grid::EquidistantGrid, interior_weight, closure_weights)
     H⁻¹s = ()
@@ -39,4 +40,4 @@
     inner_stencil = parse_scalar(stencil_set["H"]["inner"])
     closure_stencils = parse_tuple(stencil_set["H"]["closure"])
     return inverse_inner_product(grid, inner_stencil, closure_stencils)
-end 
\ No newline at end of file
+end
--- a/src/SbpOperators/volumeops/laplace/laplace.jl	Fri Feb 25 17:20:40 2022 +0100
+++ b/src/SbpOperators/volumeops/laplace/laplace.jl	Sun Mar 13 21:01:09 2022 +0100
@@ -41,7 +41,9 @@
 
 On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a
 multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s
-where the sum is carried out lazily.  See also [`second_derivative`](@ref).
+where the sum is carried out lazily.
+
+See also: [`second_derivative`](@ref).
 """
 function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils)
     Δ = second_derivative(grid, inner_stencil, closure_stencils, 1)
@@ -49,4 +51,4 @@
         Δ += second_derivative(grid, inner_stencil, closure_stencils, d)
     end
     return Δ
-end
\ No newline at end of file
+end