Mercurial > repos > public > sbplib_julia
changeset 947:38d1752a9aff feature/laplace_opset
Reformat "See also:"
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sun, 13 Mar 2022 21:01:09 +0100 |
parents | 22c80fb36400 |
children | 1484073dfe27 |
files | src/SbpOperators/boundaryops/boundary_restriction.jl src/SbpOperators/boundaryops/normal_derivative.jl src/SbpOperators/volumeops/derivatives/second_derivative.jl src/SbpOperators/volumeops/inner_products/inner_product.jl src/SbpOperators/volumeops/inner_products/inverse_inner_product.jl src/SbpOperators/volumeops/laplace/laplace.jl |
diffstat | 6 files changed, 18 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/boundaryops/boundary_restriction.jl Fri Feb 25 17:20:40 2022 +0100 +++ b/src/SbpOperators/boundaryops/boundary_restriction.jl Sun Mar 13 21:01:09 2022 +0100 @@ -6,7 +6,9 @@ `e` is the restriction of a grid function to `boundary` using a `Stencil` `closure_stencil`. `e'` is the prolongation of a grid function on `boundary` to the whole grid using the same `closure_stencil`. On a one-dimensional `grid`, `e` is a `BoundaryOperator`. On a multi-dimensional `grid`, `e` is the inflation of -a `BoundaryOperator`. See also [`boundary_operator`](@ref). +a `BoundaryOperator`. + +See also: [`boundary_operator`](@ref). """ function boundary_restriction(grid, closure_stencil::Stencil, boundary) converted_stencil = convert(Stencil{eltype(grid)}, closure_stencil)
--- a/src/SbpOperators/boundaryops/normal_derivative.jl Fri Feb 25 17:20:40 2022 +0100 +++ b/src/SbpOperators/boundaryops/normal_derivative.jl Sun Mar 13 21:01:09 2022 +0100 @@ -6,7 +6,9 @@ `d` computes the normal derivative of a grid function on `boundary` a `Stencil` `closure_stencil`. `d'` is the prolongation of the normal derivative of a grid function to the whole grid using the same `closure_stencil`. On a one-dimensional `grid`, `d` is a `BoundaryOperator`. On a multi-dimensional `grid`, `d` is the inflation of -a `BoundaryOperator`. See also [`boundary_operator`](@ref). +a `BoundaryOperator`. + +See also: [`boundary_operator`](@ref). """ function normal_derivative(grid, closure_stencil::Stencil, boundary) direction = dim(boundary)
--- a/src/SbpOperators/volumeops/derivatives/second_derivative.jl Fri Feb 25 17:20:40 2022 +0100 +++ b/src/SbpOperators/volumeops/derivatives/second_derivative.jl Sun Mar 13 21:01:09 2022 +0100 @@ -9,7 +9,8 @@ On a one-dimensional `grid`, `D2` is a `VolumeOperator`. On a multi-dimensional `grid`, `D2` is the outer product of the one-dimensional operator with the `IdentityMapping`s in orthogonal coordinate dirrections. -See also [`volume_operator`](@ref). + +See also: [`volume_operator`](@ref). """ function second_derivative(grid::EquidistantGrid, inner_stencil, closure_stencils, direction) h_inv = inverse_spacing(grid)[direction]
--- a/src/SbpOperators/volumeops/inner_products/inner_product.jl Fri Feb 25 17:20:40 2022 +0100 +++ b/src/SbpOperators/volumeops/inner_products/inner_product.jl Sun Mar 13 21:01:09 2022 +0100 @@ -12,7 +12,8 @@ N-dimensional grid, `H` is the outer product of the 1-dimensional inner product operators for each coordinate direction. On a 0-dimensional grid, `H` is a 0-dimensional `IdentityMapping`. -See also [`ConstantInteriorScalingOperator`](@ref). + +See also: [`ConstantInteriorScalingOperator`](@ref). """ function inner_product(grid::EquidistantGrid, interior_weight, closure_weights) Hs = () @@ -43,4 +44,4 @@ inner_stencil = parse_scalar(stencil_set["H"]["inner"]) closure_stencils = parse_tuple(stencil_set["H"]["closure"]) return inner_product(grid, inner_stencil, closure_stencils) -end \ No newline at end of file +end
--- a/src/SbpOperators/volumeops/inner_products/inverse_inner_product.jl Fri Feb 25 17:20:40 2022 +0100 +++ b/src/SbpOperators/volumeops/inner_products/inverse_inner_product.jl Sun Mar 13 21:01:09 2022 +0100 @@ -9,7 +9,8 @@ N-dimensional grid, `H⁻¹` is the outer product of the 1-dimensional inverse inner product operators for each coordinate direction. On a 0-dimensional `grid`, `H⁻¹` is a 0-dimensional `IdentityMapping`. -See also [`ConstantInteriorScalingOperator`](@ref). + +See also: [`ConstantInteriorScalingOperator`](@ref). """ function inverse_inner_product(grid::EquidistantGrid, interior_weight, closure_weights) H⁻¹s = () @@ -39,4 +40,4 @@ inner_stencil = parse_scalar(stencil_set["H"]["inner"]) closure_stencils = parse_tuple(stencil_set["H"]["closure"]) return inverse_inner_product(grid, inner_stencil, closure_stencils) -end \ No newline at end of file +end
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Fri Feb 25 17:20:40 2022 +0100 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Sun Mar 13 21:01:09 2022 +0100 @@ -41,7 +41,9 @@ On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s -where the sum is carried out lazily. See also [`second_derivative`](@ref). +where the sum is carried out lazily. + +See also: [`second_derivative`](@ref). """ function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) Δ = second_derivative(grid, inner_stencil, closure_stencils, 1) @@ -49,4 +51,4 @@ Δ += second_derivative(grid, inner_stencil, closure_stencils, d) end return Δ -end \ No newline at end of file +end