changeset 918:35be8253de89 bugfix/normal_derivative_sign

Change the sign of normal derivatives
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 18 Feb 2022 07:56:30 +0100
parents a378ab959b6f
children 740314733098 453fd1a2e858
files src/SbpOperators/operators/standard_diagonal.toml test/SbpOperators/boundaryops/normal_derivative_test.jl
diffstat 2 files changed, 11 insertions(+), 11 deletions(-) [+]
line wrap: on
line diff
--- a/src/SbpOperators/operators/standard_diagonal.toml	Tue Feb 15 15:14:28 2022 +0100
+++ b/src/SbpOperators/operators/standard_diagonal.toml	Fri Feb 18 07:56:30 2022 +0100
@@ -31,7 +31,7 @@
 ]
 
 e.closure = ["1"]
-d1.closure = {s = ["-3/2", "2", "-1/2"], c = 1}
+d1.closure = {s = ["3/2", "-2", "1/2"], c = 1}
 
 [[stencil_set]]
 
@@ -57,4 +57,4 @@
 ]
 
 e.closure = ["1"]
-d1.closure = {s = ["-11/6", "3", "-3/2", "1/3"], c = 1}
+d1.closure = {s = ["11/6", "-3", "3/2", "-1/3"], c = 1}
--- a/test/SbpOperators/boundaryops/normal_derivative_test.jl	Tue Feb 15 15:14:28 2022 +0100
+++ b/test/SbpOperators/boundaryops/normal_derivative_test.jl	Fri Feb 18 07:56:30 2022 +0100
@@ -45,24 +45,24 @@
             d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}())
             d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}())
 
-            @test d_w*v ≈ v∂x[1,:] atol = 1e-13
-            @test d_e*v ≈ -v∂x[end,:] atol = 1e-13
-            @test d_s*v ≈ v∂y[:,1] atol = 1e-13
-            @test d_n*v ≈ -v∂y[:,end] atol = 1e-13
+            @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
+            @test d_e*v ≈ v∂x[end,:] atol = 1e-13
+            @test d_s*v ≈ -v∂y[:,1] atol = 1e-13
+            @test d_n*v ≈ v∂y[:,end] atol = 1e-13
         end
 
         @testset "4th order" begin
-            stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
+            stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
         	d_closure = parse_stencil(stencil_set["d1"]["closure"])
             d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}())
             d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}())
             d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}())
             d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}())
 
-            @test d_w*v ≈ v∂x[1,:] atol = 1e-13
-            @test d_e*v ≈ -v∂x[end,:] atol = 1e-13
-            @test d_s*v ≈ v∂y[:,1] atol = 1e-13
-            @test d_n*v ≈ -v∂y[:,end] atol = 1e-13
+            @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
+            @test d_e*v ≈ v∂x[end,:] atol = 1e-13
+            @test d_s*v ≈ -v∂y[:,1] atol = 1e-13
+            @test d_n*v ≈ v∂y[:,end] atol = 1e-13
         end
     end
 end