Mercurial > repos > public > sbplib_julia
changeset 1810:2abde39a8285
Merge feature/grids/curvilinear
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 03 Oct 2024 18:30:08 +0200 |
parents | 79053d93dd6b (current diff) 8a98deb867fd (diff) |
children | 89d7f7b02824 |
files | |
diffstat | 8 files changed, 607 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/Manifest.toml Thu Oct 03 15:39:27 2024 +0200 +++ b/Manifest.toml Thu Oct 03 18:30:08 2024 +0200 @@ -2,7 +2,7 @@ julia_version = "1.10.5" manifest_format = "2.0" -project_hash = "28d35bafed672f63e2364cf8258fc24801cb971b" +project_hash = "07350208c6e9bd0ec3979df9ac99bb401ac56208" [[deps.Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
--- a/Project.toml Thu Oct 03 15:39:27 2024 +0200 +++ b/Project.toml Thu Oct 03 18:30:08 2024 +0200 @@ -4,6 +4,7 @@ version = "0.1.2" [deps] +LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" TOML = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
--- a/benchmark/Manifest.toml Thu Oct 03 15:39:27 2024 +0200 +++ b/benchmark/Manifest.toml Thu Oct 03 18:30:08 2024 +0200 @@ -45,7 +45,7 @@ uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[deps.Diffinitive]] -deps = ["StaticArrays", "TOML"] +deps = ["LinearAlgebra", "StaticArrays", "TOML"] path = ".." uuid = "5a373a26-915f-4769-bcab-bf03835de17b" version = "0.1.2"
--- a/docs/Manifest.toml Thu Oct 03 15:39:27 2024 +0200 +++ b/docs/Manifest.toml Thu Oct 03 18:30:08 2024 +0200 @@ -40,7 +40,7 @@ uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[deps.Diffinitive]] -deps = ["StaticArrays", "TOML"] +deps = ["LinearAlgebra", "StaticArrays", "TOML"] path = ".." uuid = "5a373a26-915f-4769-bcab-bf03835de17b" version = "0.1.2"
--- a/ext/DiffinitiveMakieExt.jl Thu Oct 03 15:39:27 2024 +0200 +++ b/ext/DiffinitiveMakieExt.jl Thu Oct 03 18:30:08 2024 +0200 @@ -33,12 +33,12 @@ ## Grids -Makie.convert_arguments(::Type{<:Scatter}, g::Grid) = (reshape(map(Point,g),:),) # (map(Point,collect(g)[:]),) -function Makie.convert_arguments(::Type{<:Lines}, g::Grid{<:Any,2}) +Makie.convert_arguments(::Type{<:Scatter}, g::Grid) = (reshape(map(Point,g),:),) +function Makie.convert_arguments(::Type{<:Lines}, g::Grid{<:AbstractVector}) M = collect(g) function cat_with_NaN(a,b) - vcat(a,[@SVector[NaN,NaN]],b) + vcat(a,[@SVector fill(NaN, coordinate_size(g))],b) end xlines = reduce(cat_with_NaN, eachrow(M)) @@ -47,7 +47,7 @@ return (cat_with_NaN(xlines,ylines),) end -Makie.plot!(plot::Plot(Grid{<:Any,2})) = lines!(plot, plot.attributes, plot[1]) +Makie.plot!(plot::Plot(Grid)) = lines!(plot, plot.attributes, plot[1]) ## Grid functions
--- a/src/Grids/Grids.jl Thu Oct 03 15:39:27 2024 +0200 +++ b/src/Grids/Grids.jl Thu Oct 03 18:30:08 2024 +0200 @@ -2,6 +2,7 @@ using Diffinitive.LazyTensors using StaticArrays +using LinearAlgebra # Grid export Grid @@ -18,6 +19,7 @@ export eval_on export componentview export ArrayComponentView +export normal export BoundaryIdentifier export TensorGridBoundary @@ -33,9 +35,18 @@ export spacing export equidistant_grid + +# MappedGrid +export MappedGrid +export jacobian +export logical_grid +export mapped_grid +export metric_tensor + include("grid.jl") include("tensor_grid.jl") include("equidistant_grid.jl") include("zero_dim_grid.jl") +include("mapped_grid.jl") end # module
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Grids/mapped_grid.jl Thu Oct 03 18:30:08 2024 +0200 @@ -0,0 +1,207 @@ +""" + MappedGrid{T,D} <: Grid{T,D} + +A grid defined by a coordinate mapping from a logical grid to some physical +coordinates. The physical coordinates and the Jacobian are stored as grid +functions corresponding to the logical grid. + +See also: [`logical_grid`](@ref), [`jacobian`](@ref), [`metric_tensor`](@ref). +""" +struct MappedGrid{T,D, GT<:Grid{<:Any,D}, CT<:AbstractArray{T,D}, JT<:AbstractArray{<:AbstractMatrix{<:Any}, D}} <: Grid{T,D} + logical_grid::GT + physicalcoordinates::CT + jacobian::JT + + """ + MappedGrid(logical_grid, physicalcoordinates, jacobian) + + A MappedGrid with the given physical coordinates and jacobian. + """ + function MappedGrid(logical_grid::GT, physicalcoordinates::CT, jacobian::JT) where {T,D, GT<:Grid{<:Any,D}, CT<:AbstractArray{T,D}, JT<:AbstractArray{<:AbstractMatrix{<:Any}, D}} + if !(size(logical_grid) == size(physicalcoordinates) == size(jacobian)) + throw(ArgumentError("Sizes must match")) + end + + if size(first(jacobian)) != (length(first(physicalcoordinates)),D) + throw(ArgumentError("The size of the jacobian must match the dimensions of the grid and coordinates")) + end + + return new{T,D,GT,CT,JT}(logical_grid, physicalcoordinates, jacobian) + end +end + +function Base.:(==)(a::MappedGrid, b::MappedGrid) + same_logical_grid = logical_grid(a) == logical_grid(b) + same_coordinates = collect(a) == collect(b) + same_jacobian = jacobian(a) == jacobian(b) + + return same_logical_grid && same_coordinates && same_jacobian +end + +""" + logical_grid(g::MappedGrid) + +The logical grid of `g`. +""" +logical_grid(g::MappedGrid) = g.logical_grid + +""" + jacobian(g::MappedGrid) + +The Jacobian matrix of `g` as a grid function. +""" +jacobian(g::MappedGrid) = g.jacobian + + +# Indexing interface +Base.getindex(g::MappedGrid, I::Vararg{Int}) = g.physicalcoordinates[I...] +Base.eachindex(g::MappedGrid) = eachindex(g.logical_grid) + +Base.firstindex(g::MappedGrid, d) = firstindex(g.logical_grid, d) +Base.lastindex(g::MappedGrid, d) = lastindex(g.logical_grid, d) + +# Iteration interface +Base.iterate(g::MappedGrid) = iterate(g.physicalcoordinates) +Base.iterate(g::MappedGrid, state) = iterate(g.physicalcoordinates, state) + +Base.IteratorSize(::Type{<:MappedGrid{<:Any, D}}) where D = Base.HasShape{D}() +Base.length(g::MappedGrid) = length(g.logical_grid) +Base.size(g::MappedGrid) = size(g.logical_grid) +Base.size(g::MappedGrid, d) = size(g.logical_grid, d) + +boundary_identifiers(g::MappedGrid) = boundary_identifiers(g.logical_grid) +boundary_indices(g::MappedGrid, id::TensorGridBoundary) = boundary_indices(g.logical_grid, id) + +function boundary_grid(g::MappedGrid, id::TensorGridBoundary) + b_indices = boundary_indices(g.logical_grid, id) + + # Calculate indices of needed jacobian components + D = ndims(g) + all_indices = SVector{D}(1:D) + free_variable_indices = deleteat(all_indices, grid_id(id)) + jacobian_components = (:, free_variable_indices) + + # Create grid function for boundary grid jacobian + boundary_jacobian = componentview((@view g.jacobian[b_indices...]) , jacobian_components...) + boundary_physicalcoordinates = @view g.physicalcoordinates[b_indices...] + + return MappedGrid( + boundary_grid(g.logical_grid, id), + boundary_physicalcoordinates, + boundary_jacobian, + ) +end + + +""" + mapped_grid(x, J, size::Vararg{Int}) + +A `MappedGrid` with a default logical grid on the D-dimensional unit hyper +box [0,1]ᴰ. `x` and `J`are functions to be evaluated on the logical grid +and `size` determines the size of the logical grid. +""" +function mapped_grid(x, J, size::Vararg{Int}) + D = length(size) + lg = equidistant_grid(ntuple(i->0., D), ntuple(i->1., D), size...) + return mapped_grid(lg, x, J) +end + +""" + mapped_grid(lg::Grid, x, J) + +A `MappedGrid` with logical grid `lg`. Physical coordinates and Jacobian are +determined by the functions `x` and `J`. +""" +function mapped_grid(lg::Grid, x, J) + return MappedGrid( + lg, + map(x,lg), + map(J,lg), + ) +end + +""" + metric_tensor(g::MappedGrid) + +The metric tensor of `g` as a grid function. +""" +function metric_tensor(g::MappedGrid) + return map(jacobian(g)) do ∂x∂ξ + ∂x∂ξ'*∂x∂ξ + end +end + +function min_spacing(g::MappedGrid{T,1} where T) + n, = size(g) + + ms = Inf + for i ∈ 1:n-1 + ms = min(ms, norm(g[i+1]-g[i])) + end + + return ms +end + +function min_spacing(g::MappedGrid{T,2} where T) + n, m = size(g) + + ms = Inf + for i ∈ 1:n-1, j ∈ 1:m-1 # loop over each cell of the grid + + ms = min( + ms, + norm(g[i+1,j]-g[i,j]), + norm(g[i,j+1]-g[i,j]), + + norm(g[i+1,j]-g[i+1,j+1]), + norm(g[i,j+1]-g[i+1,j+1]), + + norm(g[i+1,j+1]-g[i,j]), + norm(g[i+1,j]-g[i,j+1]), + ) + # NOTE: This could be optimized to avoid checking all interior edges twice. + end + + return ms +end + +""" + normal(g::MappedGrid, boundary) + +The outward pointing normal as a grid function on the corresponding boundary grid. +""" +function normal(g::MappedGrid, boundary) + b_indices = boundary_indices(g, boundary) + σ = _boundary_sign(component_type(g), boundary) + + # TODO: Refactor this when `boundary_indices(g, ...)` has been made iterable. + return map(jacobian(g)[b_indices...]) do ∂x∂ξ + ∂ξ∂x = inv(∂x∂ξ) + k = grid_id(boundary) + σ*∂ξ∂x[k,:]/norm(∂ξ∂x[k,:]) + end +end + +""" + normal(g::MappedGrid, boundary, i...) + +The outward pointing normal to the specified boundary in grid point `i`. +""" +function normal(g::MappedGrid, boundary, i...) + σ = _boundary_sign(component_type(g), boundary) + ∂ξ∂x = inv(jacobian(g)[i...]) + + k = grid_id(boundary) + return σ*∂ξ∂x[k,:]/norm(∂ξ∂x[k,:]) +end + + +function _boundary_sign(T, boundary) + if boundary_id(boundary) == UpperBoundary() + return one(T) + elseif boundary_id(boundary) == LowerBoundary() + return -one(T) + else + throw(ArgumentError("The boundary identifier must be either `LowerBoundary()` or `UpperBoundary()`")) + end +end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test/Grids/mapped_grid_test.jl Thu Oct 03 18:30:08 2024 +0200 @@ -0,0 +1,381 @@ +using Diffinitive.Grids +using Diffinitive.RegionIndices +using Test +using StaticArrays +using LinearAlgebra + + +_skew_mapping(a,b) = (ξ̄->ξ̄[1]*a + ξ̄[2]*b, ξ̄->[a b]) + +function _partially_curved_mapping() + x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))] + J((ξ, η)) = @SMatrix[ + 1 0; + η*(2ξ-1) 1+ξ*(ξ-1); + ] + + return x̄, J +end + +function _fully_curved_mapping() + x̄((ξ, η)) = @SVector[2ξ + η*(1-η), 3η+(1+η/2)*ξ^2] + J((ξ, η)) = @SMatrix[ + 2 1-2η; + (2+η)*ξ 3+1/2*ξ^2; + ] + + return x̄, J +end + +@testset "MappedGrid" begin + @testset "Constructor" begin + lg = equidistant_grid((0,0), (1,1), 11, 21) + + x̄ = map(ξ̄ -> 2ξ̄, lg) + J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) + mg = MappedGrid(lg, x̄, J) + + @test mg isa Grid{SVector{2, Float64},2} + @test jacobian(mg) isa Array{<:AbstractMatrix} + @test logical_grid(mg) isa Grid + + @test collect(mg) == x̄ + @test jacobian(mg) == J + @test logical_grid(mg) == lg + + + x̄ = map(ξ̄ -> @SVector[ξ̄[1],ξ̄[2], ξ̄[1] + ξ̄[2]], lg) + J = map(ξ̄ -> @SMatrix[1 0; 0 1; 1 1], lg) + mg = MappedGrid(lg, x̄, J) + + @test mg isa Grid{SVector{3, Float64},2} + @test jacobian(mg) isa Array{<:AbstractMatrix} + @test logical_grid(mg) isa Grid + + @test collect(mg) == x̄ + @test jacobian(mg) == J + @test logical_grid(mg) == lg + + sz1 = (10,11) + sz2 = (10,12) + @test_throws ArgumentError("Sizes must match") MappedGrid( + equidistant_grid((0,0), (1,1), sz2...), + rand(SVector{2},sz1...), + rand(SMatrix{2,2},sz1...), + ) + + @test_throws ArgumentError("Sizes must match") MappedGrid( + equidistant_grid((0,0), (1,1), sz1...), + rand(SVector{2},sz2...), + rand(SMatrix{2,2},sz1...), + ) + + @test_throws ArgumentError("Sizes must match") MappedGrid( + equidistant_grid((0,0), (1,1), sz1...), + rand(SVector{2},sz1...), + rand(SMatrix{2,2},sz2...), + ) + + err_str = "The size of the jacobian must match the dimensions of the grid and coordinates" + @test_throws ArgumentError(err_str) MappedGrid( + equidistant_grid((0,0), (1,1), 10, 11), + rand(SVector{3}, 10, 11), + rand(SMatrix{3,4}, 10, 11), + ) + + @test_throws ArgumentError(err_str) MappedGrid( + equidistant_grid((0,0), (1,1), 10, 11), + rand(SVector{3}, 10, 11), + rand(SMatrix{4,2}, 10, 11), + ) + end + + @testset "Indexing Interface" begin + lg = equidistant_grid((0,0), (1,1), 11, 21) + x̄ = map(ξ̄ -> 2ξ̄, lg) + J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) + mg = MappedGrid(lg, x̄, J) + @test mg[1,1] == [0.0, 0.0] + @test mg[4,2] == [0.6, 0.1] + @test mg[6,10] == [1., 0.9] + + @test mg[begin, begin] == [0.0, 0.0] + @test mg[end,end] == [2.0, 2.0] + @test mg[begin,end] == [0., 2.] + + @test axes(mg) == (1:11, 1:21) + + @testset "cartesian indexing" begin + cases = [ + (1,1) , + (3,5) , + (10,6), + (1,1) , + (3,2) , + ] + + @testset "i = $is" for (lg, is) ∈ cases + @test mg[CartesianIndex(is...)] == mg[is...] + end + end + + @testset "eachindex" begin + @test eachindex(mg) == CartesianIndices((11,21)) + end + + @testset "firstindex" begin + @test firstindex(mg, 1) == 1 + @test firstindex(mg, 2) == 1 + end + + @testset "lastindex" begin + @test lastindex(mg, 1) == 11 + @test lastindex(mg, 2) == 21 + end + end + + @testset "Iterator interface" begin + lg = equidistant_grid((0,0), (1,1), 11, 21) + x̄ = map(ξ̄ -> 2ξ̄, lg) + J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) + + mg = MappedGrid(lg, x̄, J) + + lg2 = equidistant_grid((0,0), (1,1), 15, 11) + sg = MappedGrid( + equidistant_grid((0,0), (1,1), 15, 11), + map(ξ̄ -> @SArray[ξ̄[1], ξ̄[2], -ξ̄[1]], lg2), rand(SMatrix{3,2,Float64},15,11) + ) + + @test eltype(mg) == SVector{2,Float64} + @test eltype(sg) == SVector{3,Float64} + + @test eltype(typeof(mg)) == SVector{2,Float64} + @test eltype(typeof(sg)) == SVector{3,Float64} + + @test size(mg) == (11,21) + @test size(sg) == (15,11) + + @test size(mg,2) == 21 + @test size(sg,2) == 11 + + @test length(mg) == 231 + @test length(sg) == 165 + + @test Base.IteratorSize(mg) == Base.HasShape{2}() + @test Base.IteratorSize(typeof(mg)) == Base.HasShape{2}() + + @test Base.IteratorSize(sg) == Base.HasShape{2}() + @test Base.IteratorSize(typeof(sg)) == Base.HasShape{2}() + + element, state = iterate(mg) + @test element == lg[1,1].*2 + element, _ = iterate(mg, state) + @test element == lg[2,1].*2 + + element, state = iterate(sg) + @test element == sg.physicalcoordinates[1,1] + element, _ = iterate(sg, state) + @test element == sg.physicalcoordinates[2,1] + + @test collect(mg) == 2 .* lg + end + + @testset "Base" begin + lg = equidistant_grid((0,0), (1,1), 11, 21) + x̄ = map(ξ̄ -> 2ξ̄, lg) + J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) + mg = MappedGrid(lg, x̄, J) + + @test ndims(mg) == 2 + end + + @testset "==" begin + sz = (15,11) + lg = equidistant_grid((0,0), (1,1), sz...) + x = rand(SVector{3,Float64}, sz...) + J = rand(SMatrix{3,2,Float64}, sz...) + + sg = MappedGrid(lg, x, J) + + sg1 = MappedGrid(equidistant_grid((0,0), (1,1), sz...), copy(x), copy(J)) + + sz2 = (15,12) + lg2 = equidistant_grid((0,0), (1,1), sz2...) + x2 = rand(SVector{3,Float64}, sz2...) + J2 = rand(SMatrix{3,2,Float64}, sz2...) + sg2 = MappedGrid(lg2, x2, J2) + + sg3 = MappedGrid(lg, rand(SVector{3,Float64}, sz...), J) + sg4 = MappedGrid(lg, x, rand(SMatrix{3,2,Float64}, sz...)) + + @test sg == sg1 + @test sg != sg2 # Different size + @test sg != sg3 # Different coordinates + @test sg != sg4 # Different jacobian + end + + @testset "boundary_identifiers" begin + lg = equidistant_grid((0,0), (1,1), 11, 15) + x̄ = map(ξ̄ -> 2ξ̄, lg) + J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) + mg = MappedGrid(lg, x̄, J) + @test boundary_identifiers(mg) == boundary_identifiers(lg) + end + + @testset "boundary_indices" begin + lg = equidistant_grid((0,0), (1,1), 11, 15) + x̄ = map(ξ̄ -> 2ξ̄, lg) + J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) + mg = MappedGrid(lg, x̄, J) + + @test boundary_indices(mg, CartesianBoundary{1,LowerBoundary}()) == boundary_indices(lg,CartesianBoundary{1,LowerBoundary}()) + @test boundary_indices(mg, CartesianBoundary{2,LowerBoundary}()) == boundary_indices(lg,CartesianBoundary{2,LowerBoundary}()) + @test boundary_indices(mg, CartesianBoundary{1,UpperBoundary}()) == boundary_indices(lg,CartesianBoundary{1,UpperBoundary}()) + end + + @testset "boundary_grid" begin + x̄, J = _partially_curved_mapping() + mg = mapped_grid(x̄, J, 10, 11) + J1((ξ, η)) = @SMatrix[ + 1 ; + η*(2ξ-1); + ] + J2((ξ, η)) = @SMatrix[ + 0; + 1+ξ*(ξ-1); + ] + + function expected_bg(mg, bId, Jb) + lg = logical_grid(mg) + return MappedGrid( + boundary_grid(lg, bId), + map(x̄, boundary_grid(lg, bId)), + map(Jb, boundary_grid(lg, bId)), + ) + end + + let bid = TensorGridBoundary{1, LowerBoundary}() + @test boundary_grid(mg, bid) == expected_bg(mg, bid, J2) + end + + let bid = TensorGridBoundary{1, UpperBoundary}() + @test boundary_grid(mg, bid) == expected_bg(mg, bid, J2) + end + + let bid = TensorGridBoundary{2, LowerBoundary}() + @test boundary_grid(mg, bid) == expected_bg(mg, bid, J1) + end + + let bid = TensorGridBoundary{2, UpperBoundary}() + @test boundary_grid(mg, bid) == expected_bg(mg, bid, J1) + end + end +end + +@testset "mapped_grid" begin + x̄, J = _partially_curved_mapping() + mg = mapped_grid(x̄, J, 10, 11) + @test mg isa MappedGrid{SVector{2,Float64}, 2} + + lg = equidistant_grid((0,0), (1,1), 10, 11) + @test logical_grid(mg) == lg + @test collect(mg) == map(x̄, lg) + + @test mapped_grid(lg, x̄, J) == mg +end + +@testset "metric_tensor" begin + x̄((ξ, η)) = @SVector[ξ*η, ξ + η^2] + J((ξ, η)) = @SMatrix[ + η ξ; + 1 2η; + ] + + g = mapped_grid(x̄, J, 10, 11) + G = map(logical_grid(g)) do (ξ,η) + @SMatrix[ + 1+η^2 ξ*η+2η; + ξ*η+2η ξ^2 + 4η^2; + ] + end + @test metric_tensor(g) ≈ G +end + +@testset "min_spacing" begin + let g = mapped_grid(identity, x->@SMatrix[1], 11) + @test min_spacing(g) ≈ 0.1 + end + + let g = mapped_grid(x->x+x.^2/2, x->@SMatrix[1 .+ x], 11) + @test min_spacing(g) ≈ 0.105 + end + + let g = mapped_grid(x->x + x.*(1 .- x)/2, x->@SMatrix[1.5 .- x], 11) + @test min_spacing(g) ≈ 0.055 + end + + let g = mapped_grid(identity, x->@SMatrix[1 0; 0 1], 11,11) + @test min_spacing(g) ≈ 0.1 + end + + let g = mapped_grid(identity, x->@SMatrix[1 0; 0 1], 11,21) + @test min_spacing(g) ≈ 0.05 + end + + + @testset let a = @SVector[1,0], b = @SVector[1,1]/√2 + g = mapped_grid(_skew_mapping(a,b)...,11,11) + + @test min_spacing(g) ≈ 0.1*norm(b-a) + end + + @testset let a = @SVector[1,0], b = @SVector[-1,1]/√2 + g = mapped_grid(_skew_mapping(a,b)...,11,11) + + @test min_spacing(g) ≈ 0.1*norm(a+b) + end +end + +@testset "normal" begin + g = mapped_grid(_partially_curved_mapping()...,10, 11) + + @test normal(g, CartesianBoundary{1,LowerBoundary}()) == fill(@SVector[-1,0], 11) + @test normal(g, CartesianBoundary{1,UpperBoundary}()) == fill(@SVector[1,0], 11) + @test normal(g, CartesianBoundary{2,LowerBoundary}()) == fill(@SVector[0,-1], 10) + @test normal(g, CartesianBoundary{2,UpperBoundary}()) ≈ map(boundary_grid(g,CartesianBoundary{2,UpperBoundary}())|>logical_grid) do ξ̄ + α = 1-2ξ̄[1] + @SVector[α,1]/√(α^2 + 1) + end + + g = mapped_grid(_fully_curved_mapping()...,5,4) + + unit(v) = v/norm(v) + @testset let bId = CartesianBoundary{1,LowerBoundary}() + lbg = boundary_grid(logical_grid(g), bId) + @test normal(g, bId) ≈ map(lbg) do (ξ, η) + -unit(@SVector[1/2, η/3-1/6]) + end + end + + @testset let bId = CartesianBoundary{1,UpperBoundary}() + lbg = boundary_grid(logical_grid(g), bId) + @test normal(g, bId) ≈ map(lbg) do (ξ, η) + unit(@SVector[7/2, 2η-1]/(5 + 3η + 2η^2)) + end + end + + @testset let bId = CartesianBoundary{2,LowerBoundary}() + lbg = boundary_grid(logical_grid(g), bId) + @test normal(g, bId) ≈ map(lbg) do (ξ, η) + -unit(@SVector[-2ξ, 2]/(6 + ξ^2 - 2ξ)) + end + end + + @testset let bId = CartesianBoundary{2,UpperBoundary}() + lbg = boundary_grid(logical_grid(g), bId) + @test normal(g, bId) ≈ map(lbg) do (ξ, η) + unit(@SVector[-3ξ, 2]/(6 + ξ^2 + 3ξ)) + end + end +end