Mercurial > repos > public > sbplib_julia
changeset 697:1b3b8f82349e refactor/operator_naming
Update tests for inner_product and inverse_inner_product
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sun, 14 Feb 2021 13:49:44 +0100 |
parents | 0bec3c4e78c0 |
children | 5ddf28ddee18 |
files | test/testSbpOperators.jl |
diffstat | 1 files changed, 31 insertions(+), 31 deletions(-) [+] |
line wrap: on
line diff
--- a/test/testSbpOperators.jl Sun Feb 14 13:48:54 2021 +0100 +++ b/test/testSbpOperators.jl Sun Feb 14 13:49:44 2021 +0100 @@ -393,7 +393,7 @@ end end -@testset "Quadrature diagonal" begin +@testset "Diagonal-stencil inner_product" begin Lx = π/2. Ly = Float64(π) Lz = 1. @@ -401,23 +401,23 @@ g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) g_3D = EquidistantGrid((10,10, 10), (0.0, 0.0, 0.0), (Lx,Ly,Lz)) integral(H,v) = sum(H*v) - @testset "quadrature" begin + @testset "inner_product" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "0D" begin - H = quadrature(EquidistantGrid{Float64}(),op.quadratureClosure) + H = inner_product(EquidistantGrid{Float64}(),op.quadratureClosure) @test H == IdentityMapping{Float64}() @test H isa TensorMapping{T,0,0} where T end @testset "1D" begin - H = quadrature(g_1D,op.quadratureClosure) + H = inner_product(g_1D,op.quadratureClosure) inner_stencil = CenteredStencil(1.) - @test H == quadrature(g_1D,op.quadratureClosure,inner_stencil) + @test H == inner_product(g_1D,op.quadratureClosure,inner_stencil) @test H isa TensorMapping{T,1,1} where T end @testset "2D" begin - H = quadrature(g_2D,op.quadratureClosure) - H_x = quadrature(restrict(g_2D,1),op.quadratureClosure) - H_y = quadrature(restrict(g_2D,2),op.quadratureClosure) + H = inner_product(g_2D,op.quadratureClosure) + H_x = inner_product(restrict(g_2D,1),op.quadratureClosure) + H_y = inner_product(restrict(g_2D,2),op.quadratureClosure) @test H == H_x⊗H_y @test H isa TensorMapping{T,2,2} where T end @@ -426,12 +426,12 @@ @testset "Sizes" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "1D" begin - H = quadrature(g_1D,op.quadratureClosure) + H = inner_product(g_1D,op.quadratureClosure) @test domain_size(H) == size(g_1D) @test range_size(H) == size(g_1D) end @testset "2D" begin - H = quadrature(g_2D,op.quadratureClosure) + H = inner_product(g_2D,op.quadratureClosure) @test domain_size(H) == size(g_2D) @test range_size(H) == size(g_2D) end @@ -448,7 +448,7 @@ @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - H = quadrature(g_1D,op.quadratureClosure) + H = inner_product(g_1D,op.quadratureClosure) for i = 1:2 @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 end @@ -457,7 +457,7 @@ @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - H = quadrature(g_1D,op.quadratureClosure) + H = inner_product(g_1D,op.quadratureClosure) for i = 1:4 @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 end @@ -471,13 +471,13 @@ u = evalOn(g_2D,(x,y)->sin(x)+cos(y)) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - H = quadrature(g_2D,op.quadratureClosure) + H = inner_product(g_2D,op.quadratureClosure) @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13 @test integral(H,u) ≈ π rtol = 1e-4 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - H = quadrature(g_2D,op.quadratureClosure) + H = inner_product(g_2D,op.quadratureClosure) @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13 @test integral(H,u) ≈ π rtol = 1e-8 end @@ -485,27 +485,27 @@ end end -@testset "InverseDiagonalQuadrature" begin +@testset "Diagonal-stencil inverse_inner_product" begin Lx = π/2. Ly = Float64(π) g_1D = EquidistantGrid(77, 0.0, Lx) g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) - @testset "Constructors" begin + @testset "inverse_inner_product" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "1D" begin - Hi = InverseDiagonalQuadrature(g_1D, op.quadratureClosure); + Hi = inverse_inner_product(g_1D, op.quadratureClosure); inner_stencil = CenteredStencil(1.) closures = () for i = 1:length(op.quadratureClosure) closures = (closures...,Stencil(op.quadratureClosure[i].range,1.0./op.quadratureClosure[i].weights)) end - @test Hi == InverseQuadrature(g_1D,inner_stencil,closures) + @test Hi == inverse_inner_product(g_1D,closures,inner_stencil) @test Hi isa TensorMapping{T,1,1} where T end @testset "2D" begin - Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) - Hi_x = InverseDiagonalQuadrature(restrict(g_2D,1),op.quadratureClosure) - Hi_y = InverseDiagonalQuadrature(restrict(g_2D,2),op.quadratureClosure) + Hi = inverse_inner_product(g_2D,op.quadratureClosure) + Hi_x = inverse_inner_product(restrict(g_2D,1),op.quadratureClosure) + Hi_y = inverse_inner_product(restrict(g_2D,2),op.quadratureClosure) @test Hi == Hi_x⊗Hi_y @test Hi isa TensorMapping{T,2,2} where T end @@ -514,12 +514,12 @@ @testset "Sizes" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "1D" begin - Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) + Hi = inverse_inner_product(g_1D,op.quadratureClosure) @test domain_size(Hi) == size(g_1D) @test range_size(Hi) == size(g_1D) end @testset "2D" begin - Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) + Hi = inverse_inner_product(g_2D,op.quadratureClosure) @test domain_size(Hi) == size(g_2D) @test range_size(Hi) == size(g_2D) end @@ -531,15 +531,15 @@ u = evalOn(g_1D,x->x^3-x^2+1) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - H = quadrature(g_1D,op.quadratureClosure) - Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) + H = inner_product(g_1D,op.quadratureClosure) + Hi = inverse_inner_product(g_1D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - H = quadrature(g_1D,op.quadratureClosure) - Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) + H = inner_product(g_1D,op.quadratureClosure) + Hi = inverse_inner_product(g_1D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end @@ -549,15 +549,15 @@ u = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y)) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - H = quadrature(g_2D,op.quadratureClosure) - Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) + H = inner_product(g_2D,op.quadratureClosure) + Hi = inverse_inner_product(g_2D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - H = quadrature(g_2D,op.quadratureClosure) - Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) + H = inner_product(g_2D,op.quadratureClosure) + Hi = inverse_inner_product(g_2D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end