changeset 697:1b3b8f82349e refactor/operator_naming

Update tests for inner_product and inverse_inner_product
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Sun, 14 Feb 2021 13:49:44 +0100
parents 0bec3c4e78c0
children 5ddf28ddee18
files test/testSbpOperators.jl
diffstat 1 files changed, 31 insertions(+), 31 deletions(-) [+]
line wrap: on
line diff
--- a/test/testSbpOperators.jl	Sun Feb 14 13:48:54 2021 +0100
+++ b/test/testSbpOperators.jl	Sun Feb 14 13:49:44 2021 +0100
@@ -393,7 +393,7 @@
     end
 end
 
-@testset "Quadrature diagonal" begin
+@testset "Diagonal-stencil inner_product" begin
     Lx = π/2.
     Ly = Float64(π)
     Lz = 1.
@@ -401,23 +401,23 @@
     g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
     g_3D = EquidistantGrid((10,10, 10), (0.0, 0.0, 0.0), (Lx,Ly,Lz))
     integral(H,v) = sum(H*v)
-    @testset "quadrature" begin
+    @testset "inner_product" begin
         op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
         @testset "0D" begin
-            H = quadrature(EquidistantGrid{Float64}(),op.quadratureClosure)
+            H = inner_product(EquidistantGrid{Float64}(),op.quadratureClosure)
             @test H == IdentityMapping{Float64}()
             @test H isa TensorMapping{T,0,0} where T
         end
         @testset "1D" begin
-            H = quadrature(g_1D,op.quadratureClosure)
+            H = inner_product(g_1D,op.quadratureClosure)
             inner_stencil = CenteredStencil(1.)
-            @test H == quadrature(g_1D,op.quadratureClosure,inner_stencil)
+            @test H == inner_product(g_1D,op.quadratureClosure,inner_stencil)
             @test H isa TensorMapping{T,1,1} where T
         end
         @testset "2D" begin
-            H = quadrature(g_2D,op.quadratureClosure)
-            H_x = quadrature(restrict(g_2D,1),op.quadratureClosure)
-            H_y = quadrature(restrict(g_2D,2),op.quadratureClosure)
+            H = inner_product(g_2D,op.quadratureClosure)
+            H_x = inner_product(restrict(g_2D,1),op.quadratureClosure)
+            H_y = inner_product(restrict(g_2D,2),op.quadratureClosure)
             @test H == H_x⊗H_y
             @test H isa TensorMapping{T,2,2} where T
         end
@@ -426,12 +426,12 @@
     @testset "Sizes" begin
         op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
         @testset "1D" begin
-            H = quadrature(g_1D,op.quadratureClosure)
+            H = inner_product(g_1D,op.quadratureClosure)
             @test domain_size(H) == size(g_1D)
             @test range_size(H) == size(g_1D)
         end
         @testset "2D" begin
-            H = quadrature(g_2D,op.quadratureClosure)
+            H = inner_product(g_2D,op.quadratureClosure)
             @test domain_size(H) == size(g_2D)
             @test range_size(H) == size(g_2D)
         end
@@ -448,7 +448,7 @@
 
             @testset "2nd order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
-                H = quadrature(g_1D,op.quadratureClosure)
+                H = inner_product(g_1D,op.quadratureClosure)
                 for i = 1:2
                     @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14
                 end
@@ -457,7 +457,7 @@
 
             @testset "4th order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-                H = quadrature(g_1D,op.quadratureClosure)
+                H = inner_product(g_1D,op.quadratureClosure)
                 for i = 1:4
                     @test integral(H,v[i]) ≈ v[i+1][end] -  v[i+1][1] rtol = 1e-14
                 end
@@ -471,13 +471,13 @@
             u = evalOn(g_2D,(x,y)->sin(x)+cos(y))
             @testset "2nd order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
-                H = quadrature(g_2D,op.quadratureClosure)
+                H = inner_product(g_2D,op.quadratureClosure)
                 @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13
                 @test integral(H,u) ≈ π rtol = 1e-4
             end
             @testset "4th order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-                H = quadrature(g_2D,op.quadratureClosure)
+                H = inner_product(g_2D,op.quadratureClosure)
                 @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13
                 @test integral(H,u) ≈ π rtol = 1e-8
             end
@@ -485,27 +485,27 @@
     end
 end
 
-@testset "InverseDiagonalQuadrature" begin
+@testset "Diagonal-stencil inverse_inner_product" begin
     Lx = π/2.
     Ly = Float64(π)
     g_1D = EquidistantGrid(77, 0.0, Lx)
     g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
-    @testset "Constructors" begin
+    @testset "inverse_inner_product" begin
         op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
         @testset "1D" begin
-            Hi = InverseDiagonalQuadrature(g_1D, op.quadratureClosure);
+            Hi = inverse_inner_product(g_1D, op.quadratureClosure);
             inner_stencil = CenteredStencil(1.)
             closures = ()
             for i = 1:length(op.quadratureClosure)
                 closures = (closures...,Stencil(op.quadratureClosure[i].range,1.0./op.quadratureClosure[i].weights))
             end
-            @test Hi == InverseQuadrature(g_1D,inner_stencil,closures)
+            @test Hi == inverse_inner_product(g_1D,closures,inner_stencil)
             @test Hi isa TensorMapping{T,1,1} where T
         end
         @testset "2D" begin
-            Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure)
-            Hi_x = InverseDiagonalQuadrature(restrict(g_2D,1),op.quadratureClosure)
-            Hi_y = InverseDiagonalQuadrature(restrict(g_2D,2),op.quadratureClosure)
+            Hi = inverse_inner_product(g_2D,op.quadratureClosure)
+            Hi_x = inverse_inner_product(restrict(g_2D,1),op.quadratureClosure)
+            Hi_y = inverse_inner_product(restrict(g_2D,2),op.quadratureClosure)
             @test Hi == Hi_x⊗Hi_y
             @test Hi isa TensorMapping{T,2,2} where T
         end
@@ -514,12 +514,12 @@
     @testset "Sizes" begin
         op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
         @testset "1D" begin
-            Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure)
+            Hi = inverse_inner_product(g_1D,op.quadratureClosure)
             @test domain_size(Hi) == size(g_1D)
             @test range_size(Hi) == size(g_1D)
         end
         @testset "2D" begin
-            Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure)
+            Hi = inverse_inner_product(g_2D,op.quadratureClosure)
             @test domain_size(Hi) == size(g_2D)
             @test range_size(Hi) == size(g_2D)
         end
@@ -531,15 +531,15 @@
             u = evalOn(g_1D,x->x^3-x^2+1)
             @testset "2nd order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
-                H = quadrature(g_1D,op.quadratureClosure)
-                Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure)
+                H = inner_product(g_1D,op.quadratureClosure)
+                Hi = inverse_inner_product(g_1D,op.quadratureClosure)
                 @test Hi*H*v ≈ v rtol = 1e-15
                 @test Hi*H*u ≈ u rtol = 1e-15
             end
             @testset "4th order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-                H = quadrature(g_1D,op.quadratureClosure)
-                Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure)
+                H = inner_product(g_1D,op.quadratureClosure)
+                Hi = inverse_inner_product(g_1D,op.quadratureClosure)
                 @test Hi*H*v ≈ v rtol = 1e-15
                 @test Hi*H*u ≈ u rtol = 1e-15
             end
@@ -549,15 +549,15 @@
             u = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y))
             @testset "2nd order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
-                H = quadrature(g_2D,op.quadratureClosure)
-                Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure)
+                H = inner_product(g_2D,op.quadratureClosure)
+                Hi = inverse_inner_product(g_2D,op.quadratureClosure)
                 @test Hi*H*v ≈ v rtol = 1e-15
                 @test Hi*H*u ≈ u rtol = 1e-15
             end
             @testset "4th order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-                H = quadrature(g_2D,op.quadratureClosure)
-                Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure)
+                H = inner_product(g_2D,op.quadratureClosure)
+                Hi = inverse_inner_product(g_2D,op.quadratureClosure)
                 @test Hi*H*v ≈ v rtol = 1e-15
                 @test Hi*H*u ≈ u rtol = 1e-15
             end