Mercurial > repos > public > sbplib_julia
changeset 696:0bec3c4e78c0 refactor/operator_naming
Rename InverseQuadrature to inverse_inner_product. Make InverseDiagonalQuadrature a special case of inverse_inner_product
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sun, 14 Feb 2021 13:48:54 +0100 |
parents | fc755b29d418 |
children | 1b3b8f82349e |
files | src/SbpOperators/volumeops/quadratures/inverse_quadrature.jl |
diffstat | 1 files changed, 27 insertions(+), 25 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/quadratures/inverse_quadrature.jl Sun Feb 14 13:47:34 2021 +0100 +++ b/src/SbpOperators/volumeops/quadratures/inverse_quadrature.jl Sun Feb 14 13:48:54 2021 +0100 @@ -1,41 +1,43 @@ +""" + inverse_inner_product(grid::EquidistantGrid, inv_inner_stencil, inv_closure_stencils) + inverse_inner_product(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T,1}}) -""" - InverseQuadrature(grid::EquidistantGrid, inv_inner_stencil, inv_closure_stencils) - -Creates the inverse `H⁻¹` of the quadrature operator as a `TensorMapping` +Creates the inverse inner product operator `H⁻¹` as a `TensorMapping` on an +equidistant grid. `H⁻¹` is defined implicitly by `H⁻¹∘H = I`, where +`H` is the corresponding inner product operator and `I` is the `IdentityMapping`. -The inverse quadrature approximates the integral operator on the grid using -`inv_inner_stencil` in the interior and a set of stencils `inv_closure_stencils` -for the points in the closure regions. +`inverse_inner_product(grid::EquidistantGrid, inv_inner_stencil, inv_closure_stencils)` +constructs `H⁻¹` using a set of stencils `inv_closure_stencils` for the points +in the closure regions and the stencil `inv_inner_stencil` in the interior. If +`inv_closure_stencils` is omitted, a central interior stencil with weight 1 is used. -On a one-dimensional `grid`, `H⁻¹` is a `VolumeOperator`. On a multi-dimensional -`grid`, `H` is the outer product of the 1-dimensional inverse quadrature operators in -each coordinate direction. Also see the documentation of -`SbpOperators.volume_operator(...)` for more details. +`inverse_inner_product(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T,1}})` +constructs a diagonal inverse inner product operator where `closure_stencils` are the +closure stencils of `H` (not `H⁻¹`!). + +On a 1-dimensional `grid`, `H⁻¹` is a `VolumeOperator`. On a N-dimensional +`grid`, `H⁻¹` is the outer product of the 1-dimensional inverse inner product +operators in each coordinate direction. Also see the documentation of +`SbpOperators.volume_operator(...)` for more details. On a 0-dimensional `grid`, +`H⁻¹` is a 0-dimensional `IdentityMapping`. """ -function InverseQuadrature(grid::EquidistantGrid{Dim}, inv_inner_stencil, inv_closure_stencils) where Dim +function inverse_inner_product(grid::EquidistantGrid, inv_closure_stencils, inv_inner_stencil = CenteredStencil(one(eltype(grid)))) h⁻¹ = inverse_spacing(grid) H⁻¹ = SbpOperators.volume_operator(grid,scale(inv_inner_stencil,h⁻¹[1]),scale.(inv_closure_stencils,h⁻¹[1]),even,1) - for i ∈ 2:Dim + for i ∈ 2:dimension(grid) Hᵢ⁻¹ = SbpOperators.volume_operator(grid,scale(inv_inner_stencil,h⁻¹[i]),scale.(inv_closure_stencils,h⁻¹[i]),even,i) H⁻¹ = H⁻¹∘Hᵢ⁻¹ end return H⁻¹ end -export InverseQuadrature +export inverse_inner_product -""" - InverseDiagonalQuadrature(grid::EquidistantGrid, closure_stencils) +inverse_inner_product(grid::EquidistantGrid{0}, inv_closure_stencils, inv_inner_stencil) = IdentityMapping{eltype(grid)}() -Creates the inverse of the diagonal quadrature operator defined by the inner stencil -1/h and a set of 1-element closure stencils in `closure_stencils`. Note that -the closure stencils are those of the quadrature operator (and not the inverse). -""" -function InverseDiagonalQuadrature(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T,1}}) where {T,M} - inv_inner_stencil = Stencil(one(T), center=1) - inv_closure_stencils = reciprocal_stencil.(closure_stencils) - return InverseQuadrature(grid, inv_inner_stencil, inv_closure_stencils) +function inverse_inner_product(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T,1}}) where {M,T} + inv_closure_stencils = reciprocal_stencil.(closure_stencils) + inv_inner_stencil = CenteredStencil(one(T)) + return inverse_inner_product(grid, inv_closure_stencils, inv_inner_stencil) end -export InverseDiagonalQuadrature reciprocal_stencil(s::Stencil{T}) where T = Stencil(s.range,one(T)./s.weights)