Mercurial > repos > public > sbplib_julia
changeset 706:19301615b340 feature/laplace_opset
Use the Laplace struct in tests for accuracy
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 15 Feb 2021 17:59:26 +0100 |
parents | bf1387f867b8 |
children | ee1808820929 |
files | test/testSbpOperators.jl |
diffstat | 1 files changed, 2 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/test/testSbpOperators.jl Mon Feb 15 17:53:13 2021 +0100 +++ b/test/testSbpOperators.jl Mon Feb 15 17:59:26 2021 +0100 @@ -501,7 +501,7 @@ # 2nd order interior stencil, 1st order boundary stencil, # implies that L*v should be exact for binomials up to order 2. @testset "2nd order" begin - L = laplace(g_3D,op2.innerStencil,op2.closureStencils) + L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=2) @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 @@ -511,8 +511,7 @@ # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for binomials up to order 3. @testset "4th order" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - L = laplace(g_3D,op4.innerStencil,op4.closureStencils) + L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9