changeset 935:079024db8226 feature/laplace_opset

Add test for constructing inner product and inverse via stencil sets
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 25 Feb 2022 16:57:06 +0100
parents af670581b464
children 22c80fb36400
files test/SbpOperators/volumeops/inner_products/inner_product_test.jl test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl
diffstat 2 files changed, 6 insertions(+), 1 deletions(-) [+]
line wrap: on
line diff
--- a/test/SbpOperators/volumeops/inner_products/inner_product_test.jl	Fri Feb 25 16:35:16 2022 +0100
+++ b/test/SbpOperators/volumeops/inner_products/inner_product_test.jl	Fri Feb 25 16:57:06 2022 +0100
@@ -4,7 +4,6 @@
 using Sbplib.Grids
 using Sbplib.LazyTensors
 
-
 @testset "Diagonal-stencil inner_product" begin
     Lx = π/2.
     Ly = Float64(π)
@@ -19,11 +18,13 @@
         quadrature_closure = parse_tuple(stencil_set["H"]["closure"])
         @testset "0D" begin
             H = inner_product(EquidistantGrid{Float64}(), quadrature_interior, quadrature_closure)
+            @test H == inner_product(EquidistantGrid{Float64}(), stencil_set)
             @test H == IdentityMapping{Float64}()
             @test H isa TensorMapping{T,0,0} where T
         end
         @testset "1D" begin
             H = inner_product(g_1D, quadrature_interior, quadrature_closure)
+            @test H == inner_product(g_1D, stencil_set)
             @test H == inner_product(g_1D, quadrature_interior, quadrature_closure)
             @test H isa TensorMapping{T,1,1} where T
         end
@@ -31,6 +32,7 @@
             H = inner_product(g_2D, quadrature_interior, quadrature_closure)
             H_x = inner_product(restrict(g_2D,1), quadrature_interior, quadrature_closure)
             H_y = inner_product(restrict(g_2D,2), quadrature_interior, quadrature_closure)
+            @test H == inner_product(g_2D, stencil_set)
             @test H == H_x⊗H_y
             @test H isa TensorMapping{T,2,2} where T
         end
--- a/test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl	Fri Feb 25 16:35:16 2022 +0100
+++ b/test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl	Fri Feb 25 16:57:06 2022 +0100
@@ -17,17 +17,20 @@
         quadrature_closure = parse_tuple(stencil_set["H"]["closure"])
         @testset "0D" begin
             Hi = inverse_inner_product(EquidistantGrid{Float64}(), quadrature_interior, quadrature_closure)
+            @test Hi == inverse_inner_product(EquidistantGrid{Float64}(), stencil_set)
             @test Hi == IdentityMapping{Float64}()
             @test Hi isa TensorMapping{T,0,0} where T
         end
         @testset "1D" begin
             Hi = inverse_inner_product(g_1D,  quadrature_interior, quadrature_closure)
+            @test Hi == inverse_inner_product(g_1D, stencil_set)
             @test Hi isa TensorMapping{T,1,1} where T
         end
         @testset "2D" begin
             Hi = inverse_inner_product(g_2D, quadrature_interior, quadrature_closure)
             Hi_x = inverse_inner_product(restrict(g_2D,1), quadrature_interior, quadrature_closure)
             Hi_y = inverse_inner_product(restrict(g_2D,2), quadrature_interior, quadrature_closure)
+            @test Hi == inverse_inner_product(g_2D, stencil_set)
             @test Hi == Hi_x⊗Hi_y
             @test Hi isa TensorMapping{T,2,2} where T
         end