Mercurial > repos > public > sbplib_julia
changeset 935:079024db8226 feature/laplace_opset
Add test for constructing inner product and inverse via stencil sets
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 25 Feb 2022 16:57:06 +0100 |
parents | af670581b464 |
children | 22c80fb36400 |
files | test/SbpOperators/volumeops/inner_products/inner_product_test.jl test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl |
diffstat | 2 files changed, 6 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/test/SbpOperators/volumeops/inner_products/inner_product_test.jl Fri Feb 25 16:35:16 2022 +0100 +++ b/test/SbpOperators/volumeops/inner_products/inner_product_test.jl Fri Feb 25 16:57:06 2022 +0100 @@ -4,7 +4,6 @@ using Sbplib.Grids using Sbplib.LazyTensors - @testset "Diagonal-stencil inner_product" begin Lx = π/2. Ly = Float64(π) @@ -19,11 +18,13 @@ quadrature_closure = parse_tuple(stencil_set["H"]["closure"]) @testset "0D" begin H = inner_product(EquidistantGrid{Float64}(), quadrature_interior, quadrature_closure) + @test H == inner_product(EquidistantGrid{Float64}(), stencil_set) @test H == IdentityMapping{Float64}() @test H isa TensorMapping{T,0,0} where T end @testset "1D" begin H = inner_product(g_1D, quadrature_interior, quadrature_closure) + @test H == inner_product(g_1D, stencil_set) @test H == inner_product(g_1D, quadrature_interior, quadrature_closure) @test H isa TensorMapping{T,1,1} where T end @@ -31,6 +32,7 @@ H = inner_product(g_2D, quadrature_interior, quadrature_closure) H_x = inner_product(restrict(g_2D,1), quadrature_interior, quadrature_closure) H_y = inner_product(restrict(g_2D,2), quadrature_interior, quadrature_closure) + @test H == inner_product(g_2D, stencil_set) @test H == H_x⊗H_y @test H isa TensorMapping{T,2,2} where T end
--- a/test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl Fri Feb 25 16:35:16 2022 +0100 +++ b/test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl Fri Feb 25 16:57:06 2022 +0100 @@ -17,17 +17,20 @@ quadrature_closure = parse_tuple(stencil_set["H"]["closure"]) @testset "0D" begin Hi = inverse_inner_product(EquidistantGrid{Float64}(), quadrature_interior, quadrature_closure) + @test Hi == inverse_inner_product(EquidistantGrid{Float64}(), stencil_set) @test Hi == IdentityMapping{Float64}() @test Hi isa TensorMapping{T,0,0} where T end @testset "1D" begin Hi = inverse_inner_product(g_1D, quadrature_interior, quadrature_closure) + @test Hi == inverse_inner_product(g_1D, stencil_set) @test Hi isa TensorMapping{T,1,1} where T end @testset "2D" begin Hi = inverse_inner_product(g_2D, quadrature_interior, quadrature_closure) Hi_x = inverse_inner_product(restrict(g_2D,1), quadrature_interior, quadrature_closure) Hi_y = inverse_inner_product(restrict(g_2D,2), quadrature_interior, quadrature_closure) + @test Hi == inverse_inner_product(g_2D, stencil_set) @test Hi == Hi_x⊗Hi_y @test Hi isa TensorMapping{T,2,2} where T end