Mercurial > repos > public > sbplib_julia
changeset 132:6b6d921e8f05 cell_based_test
merge
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Thu, 21 Feb 2019 14:19:25 +0100 |
parents | 8569c637d923 (diff) f01b70b81e95 (current diff) |
children | 79699dda29be b9e8d2e1a30f |
files | sbpD2.jl stencil.jl |
diffstat | 8 files changed, 137 insertions(+), 83 deletions(-) [+] |
line wrap: on
line diff
diff -r f01b70b81e95 -r 6b6d921e8f05 AbstractGrid.jl --- a/AbstractGrid.jl Thu Feb 07 16:34:55 2019 +0100 +++ b/AbstractGrid.jl Thu Feb 21 14:19:25 2019 +0100 @@ -1,10 +1,6 @@ abstract type AbstractGrid end -function numberOfDimensions(grid::AbstractGrid) - error("Not implemented for abstact type AbstractGrid") -end - -function numberOfPoints(grid::AbstractGrid) +function dimension(grid::AbstractGrid) error("Not implemented for abstact type AbstractGrid") end
diff -r f01b70b81e95 -r 6b6d921e8f05 EquidistantGrid.jl --- a/EquidistantGrid.jl Thu Feb 07 16:34:55 2019 +0100 +++ b/EquidistantGrid.jl Thu Feb 21 14:19:25 2019 +0100 @@ -5,85 +5,52 @@ # the domain is defined as (-1,1)x(0,2). struct EquidistantGrid{Dim,T<:Real} <: AbstractGrid - numberOfPointsPerDim::NTuple{Dim, Int} # First coordinate direction stored first, then - + size::NTuple{Dim, Int} # First coordinate direction stored first limit_lower::NTuple{Dim, T} limit_upper::NTuple{Dim, T} + inverse_spacing::NTuple{Dim, T} # The reciprocal of the grid spacing # General constructor - function EquidistantGrid(nPointsPerDim::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where Dim where T - @assert all(nPointsPerDim.>0) + function EquidistantGrid(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where Dim where T + @assert all(size.>0) @assert all(limit_upper.-limit_lower .!= 0) - return new{Dim,T}(nPointsPerDim, limit_lower, limit_upper) + inverse_spacing = (size.-1)./abs.(limit_upper.-limit_lower) + return new{Dim,T}(size, limit_lower, limit_upper, inverse_spacing) end +end - # # 1D constructor which can be called as EquidistantGrid(m, (xl,xr)) - # function EquidistantGrid(nPointsPerDim::Integer, lims::NTuple{2,Real}) - # return EquidistantGrid((nPointsPerDim,), ((lims[1],),(lims[2],))) - # end - +function Base.eachindex(grid::EquidistantGrid) + CartesianIndices(grid.size) end # Returns the number of dimensions of an EquidistantGrid. # # @Input: grid - an EquidistantGrid -# @Return: numberOfPoints - The number of dimensions -function numberOfDimensions(grid::EquidistantGrid) - return length(grid.numberOfPointsPerDim) -end - -# Computes the total number of points of an EquidistantGrid. -# -# @Input: grid - an EquidistantGrid -# @Return: numberOfPoints - The total number of points -function numberOfPoints(grid::EquidistantGrid) - return prod(grid.numberOfPointsPerDim) +# @Return: dimension - The dimension of the grid +function dimension(grid::EquidistantGrid) + return length(grid.size) end -# Computes the grid spacing of an EquidistantGrid, i.e the unsigned distance -# between two points for each coordinate direction. +# Returns the spacing of the grid # -# @Input: grid - an EquidistantGrid -# @Return: h̄ - Grid spacing for each coordinate direction stored in a tuple. -function spacings(grid::EquidistantGrid) - return abs.(grid.limit_upper.-grid.limit_lower)./(grid.numberOfPointsPerDim.-1) +function spacing(grid::EquidistantGrid) + return 1.0./grid.inverse_spacing end -function Base.eachindex(grid::EquidistantGrid) - CartesianIndices(grid.numberOfPointsPerDim) -end - -# Computes the points of an EquidistantGrid as a vector of tuples. The vector is ordered -# such that points in the first coordinate direction varies first, then the second -# and lastely the third (if applicable) +# Computes the points of an EquidistantGrid as an array of tuples with +# the same dimension as the grid. # # @Input: grid - an EquidistantGrid # @Return: points - the points of the grid. function points(grid::EquidistantGrid) # TODO: Make this return an abstract array? - physical_domain_size = (grid.limit_upper .- grid.limit_lower) - indices = Tuple.(CartesianIndices(grid.numberOfPointsPerDim)) - return broadcast(I -> grid.limit_lower .+ physical_domain_size.*(I.-1), indices) + indices = Tuple.(CartesianIndices(grid.size)) + h = spacing(grid) + return broadcast(I -> grid.limit_lower .+ (I.-1).*h, indices) end function pointsalongdim(grid::EquidistantGrid, dim::Integer) - @assert dim<=numberOfDimensions(grid) + @assert dim<=dimension(grid) @assert dim>0 - points = range(grid.limit_lower[dim],stop=grid.limit_lower[dim],length=grid.numberOfPointsPerDim[dim]) + points = range(grid.limit_lower[dim],stop=grid.limit_lower[dim],length=grid.size[dim]) end - -using PyPlot, PyCall - -function plotgridfunction(grid::EquidistantGrid, gridfunction) - if numberOfDimensions(grid) == 1 - plot(pointsalongdim(grid,1), gridfunction, linewidth=2.0) - elseif numberOfDimensions(grid) == 2 - mx = grid.numberOfPointsPerDim[1] - my = grid.numberOfPointsPerDim[2] - X = repeat(pointsalongdim(grid,1),1,my) - Y = permutedims(repeat(pointsalongdim(grid,2),1,mx)) - plot_surface(X,Y,reshape(gridfunction,mx,my)); - else - error(string("Plot not implemented for dimension ", string(numberOfDimensions(grid)))) - end -end
diff -r f01b70b81e95 -r 6b6d921e8f05 TODO.txt --- a/TODO.txt Thu Feb 07 16:34:55 2019 +0100 +++ b/TODO.txt Thu Feb 21 14:19:25 2019 +0100 @@ -4,4 +4,9 @@ Kolla att vi gör boundschecks överallt och att de är markerade med @boundscheck Kolla att vi har @inline på rätt ställen -Ändra namn på variabler och funktioner så att det följer style-guide \ No newline at end of file +Ändra namn på variabler och funktioner så att det följer style-guide + +Profilera + +Konvertera till paket +Skriv tester
diff -r f01b70b81e95 -r 6b6d921e8f05 diffOp.jl --- a/diffOp.jl Thu Feb 07 16:34:55 2019 +0100 +++ b/diffOp.jl Thu Feb 21 14:19:25 2019 +0100 @@ -44,6 +44,53 @@ return nothing end +function apply_region!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}) where T + apply_region!(D, u, v, Lower, Lower) + apply_region!(D, u, v, Lower, Interior) + apply_region!(D, u, v, Lower, Upper) + apply_region!(D, u, v, Interior, Lower) + apply_region!(D, u, v, Interior, Interior) + apply_region!(D, u, v, Interior, Upper) + apply_region!(D, u, v, Upper, Lower) + apply_region!(D, u, v, Upper, Interior) + apply_region!(D, u, v, Upper, Upper) + return nothing +end + +# Maybe this should be split according to b3fbef345810 after all?! Seems like it makes performance more predictable +function apply_region!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}, r1::Type{<:Region}, r2::Type{<:Region}) where T + for I ∈ regionindices(D.grid.size, closureSize(D.op), (r1,r2)) + @inbounds indextuple = (Index{r1}(I[1]), Index{r2}(I[2])) + @inbounds u[I] = apply(D, v, indextuple) + end + return nothing +end + +function apply_tiled!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}) where T + apply_region_tiled!(D, u, v, Lower, Lower) + apply_region_tiled!(D, u, v, Lower, Interior) + apply_region_tiled!(D, u, v, Lower, Upper) + apply_region_tiled!(D, u, v, Interior, Lower) + apply_region_tiled!(D, u, v, Interior, Interior) + apply_region_tiled!(D, u, v, Interior, Upper) + apply_region_tiled!(D, u, v, Upper, Lower) + apply_region_tiled!(D, u, v, Upper, Interior) + apply_region_tiled!(D, u, v, Upper, Upper) + return nothing +end + +using TiledIteration +function apply_region_tiled!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}, r1::Type{<:Region}, r2::Type{<:Region}) where T + ri = regionindices(D.grid.size, closureSize(D.op), (r1,r2)) + for tileaxs ∈ TileIterator(axes(ri), padded_tilesize(T, (5,5), 2)) # TBD: Is this the right way, the right size? + for j ∈ tileaxs[2], i ∈ tileaxs[1] + I = ri[i,j] + u[i,j] = apply(D, v, (Index{r1}(I[1]), Index{r2}(I[2]))) + end + end + return nothing +end + function apply(D::DiffOp, v::AbstractVector)::AbstractVector u = zeros(eltype(v), size(v)) apply!(D,v,u) @@ -62,23 +109,17 @@ # u = L*v function apply(L::Laplace{1}, v::AbstractVector, i::Int) - h = Grid.spacings(L.grid)[1] - uᵢ = L.a * apply(L.op, h, v, i) + uᵢ = L.a * apply(L.op, L.grid.spacing[1], v, i) return uᵢ end -using UnsafeArrays - -function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, I::Tuple{Index{R1}, Index{R2}}) where {R1, R2} - h = Grid.spacings(L.grid) - +@inline function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, I::Tuple{Index{R1}, Index{R2}}) where {R1, R2} # 2nd x-derivative - @inbounds vx = uview(v, :, Int(I[2])) - @inbounds uᵢ = apply(L.op, h[1], vx , I[1]) + @inbounds vx = view(v, :, Int(I[2])) + @inbounds uᵢ = L.a*apply(L.op, L.grid.inverse_spacing[1], vx , I[1]) # 2nd y-derivative - @inbounds vy = uview(v, Int(I[1]), :) - @inbounds uᵢ += apply(L.op, h[2], vy, I[2]) - + @inbounds vy = view(v, Int(I[1]), :) + @inbounds uᵢ += L.a*apply(L.op, L.grid.inverse_spacing[2], vy, I[2]) return uᵢ end
diff -r f01b70b81e95 -r 6b6d921e8f05 index.jl --- a/index.jl Thu Feb 07 16:34:55 2019 +0100 +++ b/index.jl Thu Feb 21 14:19:25 2019 +0100 @@ -38,3 +38,25 @@ end IndexTuple(t::Vararg{Tuple{T, DataType}}) where T<:Integer = Index.(t) + +function regionindices(gridsize::NTuple{Dim,Integer}, closuresize::Integer, region::NTuple{Dim,DataType}) where Dim + return regionindices(gridsize, ntuple(x->closuresize,Dim), region) +end + +function regionindices(gridsize::NTuple{Dim,Integer}, closuresize::NTuple{Dim,Integer}, region::NTuple{Dim,DataType}) where Dim + regions = map(getrange,gridsize,closuresize,region) + return CartesianIndices(regions) +end + +function getrange(gridsize::Integer, closuresize::Integer, region::DataType) + if region == Lower + r = 1:closuresize + elseif region == Interior + r = (closuresize+1):(gridsize - closuresize) + elseif region == Upper + r = (gridsize - closuresize + 1):gridsize + else + error("Unspecified region") + end + return r +end
diff -r f01b70b81e95 -r 6b6d921e8f05 sbpD2.jl --- a/sbpD2.jl Thu Feb 07 16:34:55 2019 +0100 +++ b/sbpD2.jl Thu Feb 21 14:19:25 2019 +0100 @@ -2,16 +2,16 @@ # Apply for different regions Lower/Interior/Upper or Unknown region @inline function apply(op::ConstantStencilOperator, h::Real, v::AbstractVector, i::Index{Lower}) - return @inbounds apply(op.closureStencils[Int(i)], v, Int(i))/h^2 + return @inbounds h*h*apply(op.closureStencils[Int(i)], v, Int(i)) end @inline function apply(op::ConstantStencilOperator, h::Real, v::AbstractVector, i::Index{Interior}) - return @inbounds apply(op.innerStencil, v, Int(i))/h^2 + return @inbounds h*h*apply(op.innerStencil, v, Int(i)) end @inline function apply(op::ConstantStencilOperator, h::Real, v::AbstractVector, i::Index{Upper}) N = length(v) - return @inbounds Int(op.parity)*apply(flip(op.closureStencils[N-Int(i)+1]), v, Int(i))/h^2 + return @inbounds h*h*Int(op.parity)*apply_backwards(op.closureStencils[N-Int(i)+1], v, Int(i)) end @inline function apply(op::ConstantStencilOperator, h::Real, v::AbstractVector, index::Index{Unknown})
diff -r f01b70b81e95 -r 6b6d921e8f05 sbpPlot.jl --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/sbpPlot.jl Thu Feb 21 14:19:25 2019 +0100 @@ -0,0 +1,17 @@ +module sbpPlot +using PyPlot, PyCall + +function plotgridfunction(grid::EquidistantGrid, gridfunction) + if dimension(grid) == 1 + plot(pointsalongdim(grid,1), gridfunction, linewidth=2.0) + elseif dimension(grid) == 2 + mx = grid.size[1] + my = grid.size[2] + X = repeat(pointsalongdim(grid,1),1,my) + Y = permutedims(repeat(pointsalongdim(grid,2),1,mx)) + plot_surface(X,Y,reshape(gridfunction,mx,my)); + else + error(string("Plot not implemented for dimension ", string(dimension(grid)))) + end +end +end
diff -r f01b70b81e95 -r 6b6d921e8f05 stencil.jl --- a/stencil.jl Thu Feb 07 16:34:55 2019 +0100 +++ b/stencil.jl Thu Feb 21 14:19:25 2019 +0100 @@ -14,19 +14,25 @@ end # Provides index into the Stencil based on offset for the root element -function Base.getindex(s::Stencil, i::Int) +@inline function Base.getindex(s::Stencil, i::Int) @boundscheck if i < s.range[1] || s.range[2] < i return eltype(s.weights)(0) end - return s.weights[1 + i - s.range[1]] end -Base.@propagate_inbounds function apply(s::Stencil, v::AbstractVector, i::Int) - w = zero(eltype(v)) - for j ∈ s.range[1]:s.range[2] - @inbounds weight = s[j] - w += weight*v[i+j] +Base.@propagate_inbounds @inline function apply(s::Stencil{T,N}, v::AbstractVector, i::Int) where {T,N} + w = s.weights[1]*v[i + s.range[1]] + @simd for k ∈ 2:N + w += s.weights[k]*v[i + s.range[1] + k-1] end return w end + +Base.@propagate_inbounds @inline function apply_backwards(s::Stencil{T,N}, v::AbstractVector, i::Int) where {T,N} + w = s.weights[N]*v[i - s.range[2]] + @simd for k ∈ N-1:-1:1 + w += s.weights[k]*v[i - s.range[1] - k + 1] + end + return w +end