Mercurial > repos > public > sbplib_julia
view test/Grids/geometry_test.jl @ 2015:5c2448d6a201 feature/grids/geometry_functions tip
Structure tests a bit more
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 09 May 2025 15:57:38 +0200 |
parents | 7895b509f9bf |
children |
line wrap: on
line source
using Diffinitive.Grids using Diffinitive.Grids: Line, LineSegment, linesegments, polygon_edges, Circle, TransfiniteInterpolationSurface, check_transfiniteinterpolation, arc, Arc using StaticArrays @testset "Line" begin @testset "Constructors" begin @test Line([1,2],[2,3]) isa Line{SVector{2,Int}} @test Line((1,2),(2,3)) isa Line{SVector{2,Int}} @test Line(@SVector[1,2],[2,3]) isa Line{SVector{2,Int}} @test Line(@SVector[1,2],@SVector[2,3]) isa Line{SVector{2,Int}} @test Line([1,2],[2.,3]) isa Line{SVector{2,Float64}} @test Line(@SVector[1,2.],@SVector[2,3]) isa Line{SVector{2,Float64}} @test Line((1,2.),(2,3)) isa Line{SVector{2,Float64}} end @testset "Evaluation" begin l = Line([1,2],[2,3]) @test l(0) == [1,2] @test l(1) == [1,2] + [2,3] @test l(1/2) == [1,2] + [2,3]/2 end @testset "Grids.jacobian" begin l = Line([1,2],[2,3]) @test Grids.jacobian(l,0) == [2,3] @test Grids.jacobian(l,1) == [2,3] @test Grids.jacobian(l,1/2) == [2,3] end end @testset "LineSegment" begin @testset "Constructors" begin @test LineSegment([1,2],[2,3]) isa LineSegment{SVector{2,Int}} @test LineSegment((1,2),(2,3)) isa LineSegment{SVector{2,Int}} @test LineSegment(@SVector[1,2],[2,3]) isa LineSegment{SVector{2,Int}} @test LineSegment(@SVector[1,2],@SVector[2,3]) isa LineSegment{SVector{2,Int}} @test LineSegment([1,2],[2.,3]) isa LineSegment{SVector{2,Float64}} @test LineSegment(@SVector[1,2.],@SVector[2,3]) isa LineSegment{SVector{2,Float64}} @test LineSegment((1,2.),(2,3)) isa LineSegment{SVector{2,Float64}} end @testset "Evaluation" begin l = LineSegment([1,2],[2,3]) @test l(0) == [1,2] @test l(1) == [2,3] @test l(1/2) == [1,2]/2 + [2,3]/2 end @testset "Grids.jacobian" begin a, b = [1,2], [2,3] l = LineSegment(a,b) d = b-a @test Grids.jacobian(l,0) == d @test Grids.jacobian(l,1) == d @test Grids.jacobian(l,1/2) == d end end @testset "linesegments" begin a,b,c,d = [1,1],[2,2],[3,3],[4,4] @test linesegments(a,b) == [ LineSegment(a,b), ] @test linesegments(a,b,c) == [ LineSegment(a,b), LineSegment(b,c), ] @test linesegments(a,b,c,d) == [ LineSegment(a,b), LineSegment(b,c), LineSegment(c,d), ] end @testset "polygon_edges" begin a,b,c,d = [1,1],[2,2],[3,3],[4,4] @test polygon_edges(a,b) == [ LineSegment(a,b), LineSegment(b,a), ] @test polygon_edges(a,b,c) == [ LineSegment(a,b), LineSegment(b,c), LineSegment(c,a), ] @test polygon_edges(a,b,c,d) == [ LineSegment(a,b), LineSegment(b,c), LineSegment(c,d), LineSegment(d,a), ] end @testset "Circle" begin @testset "Constructors" begin @test Circle([1,2], 1) isa Circle{SVector{2,Int},Int} @test Circle([1,2], 1.) isa Circle{SVector{2,Int},Float64} @test Circle([1,2.], 1.) isa Circle{SVector{2,Float64},Float64} @test Circle([1,2.], 1) isa Circle{SVector{2,Float64},Int} @test Circle((1,2.), 1.) isa Circle{SVector{2,Float64},Float64} @test Circle((1,2), 1.) isa Circle{SVector{2,Int},Float64} @test Circle((1.,2), 1) isa Circle{SVector{2,Float64},Int} @test Circle((1,2), 1) isa Circle{SVector{2,Int},Int} @test Circle(@SVector[1,2], 1.) isa Circle{SVector{2,Int},Float64} @test Circle(@SVector[1,2.], 1.) isa Circle{SVector{2,Float64},Float64} end @testset "Evaluation" begin c = Circle([0,0], 1) @test c(0) ≈ [1,0] @test c(π/2) ≈ [0,1] @test c(π) ≈ [-1,0] @test c(3π/2) ≈ [0,-1] @test c(π/4) ≈ [1/√(2),1/√(2)] c = Circle([0,0], 2) @test c(0) ≈ [2,0] @test c(π/2) ≈ [0,2] @test c(π) ≈ [-2,0] @test c(3π/2) ≈ [0,-2] @test c(π/4) ≈ [√(2),√(2)] end @testset "Grids.jacobian" begin c = Circle([0,0], 1) @test Grids.jacobian(c, 0) ≈ [0,1] @test Grids.jacobian(c, π/2) ≈ [-1,0] @test Grids.jacobian(c, π) ≈ [0,-1] @test Grids.jacobian(c, 3π/2) ≈ [1,0] @test Grids.jacobian(c, π/4) ≈ [-1/√(2),1/√(2)] c = Circle([0,0], 2) @test Grids.jacobian(c, 0) ≈ [0,2] @test Grids.jacobian(c, π/2) ≈ [-2,0] @test Grids.jacobian(c, π) ≈ [0,-2] @test Grids.jacobian(c, 3π/2) ≈ [2,0] @test Grids.jacobian(c, π/4) ≈ [-√(2),√(2)] c = Circle([-1,1], 1) @test Grids.jacobian(c, 0) ≈ [0,1] @test Grids.jacobian(c, π/2) ≈ [-1,0] @test Grids.jacobian(c, π) ≈ [0,-1] @test Grids.jacobian(c, 3π/2) ≈ [1,0] @test Grids.jacobian(c, π/4) ≈ [-1/√(2),1/√(2)] c = Circle([-1,1], 2) @test Grids.jacobian(c, 0) ≈ [0,2] @test Grids.jacobian(c, π/2) ≈ [-2,0] @test Grids.jacobian(c, π) ≈ [0,-2] @test Grids.jacobian(c, 3π/2) ≈ [2,0] @test Grids.jacobian(c, π/4) ≈ [-√(2),√(2)] end end @testset "Arc" begin @test Arc(Circle([0,0], 1), 0, 1) isa Arc{SVector{2,Int}, Int} @test Arc(Circle([0,0], 1.), 0, 1) isa Arc{SVector{2,Int}, Float64} @test Arc(Circle([1., 1.], 1), 0., 1.) isa Arc{SVector{2,Float64}, Float64} @test Arc(Circle([1., 1.], 1), 0, 1) isa Arc{SVector{2,Float64}, Int} @test Arc(Circle([1., 1.], 1), 0, 1.) isa Arc{SVector{2,Float64}, Float64} a = Arc(Circle([0,0], 1), 0, π/2) @test a(0) ≈ [1,0] @test a(1/3) ≈ [√(3)/2,1/2] @test a(1/2) ≈ [1/√(2),1/√(2)] @test a(2/3) ≈ [1/2, √(3)/2] @test a(1) ≈ [0,1] @testset "Grids.jacobian" begin c = Circle([0,0], 1) @testset "Matched to circle" begin a = Arc(c, 0, 1) @testset for t ∈ range(0,1,8) @test jacobian(a,t) ≈ jacobian(c,t) end end @testset "Full circle" begin a = Arc(c, 0, 2π) @testset for t ∈ range(0,1,8) @test jacobian(a,t) ≈ 2π*jacobian(c,t) end end @testset "Other" begin a = Arc(c, π/3, 5π/4) @testset for t ∈ range(0,1,8) @test jacobian(a,t) ≈ 11π/12*jacobian(c,t) end end end end @testset "arc" begin @testset "Half circles around [0.5, 0.0]" begin a = [0,0] b = [1,0] A = arc(a,b,1/2) @test A(0) ≈ a atol=1e-15 @test A(1) ≈ b @test A(0.5) ≈ [0.5, -0.5] A = arc(a,b,-1/2) @test A(0) ≈ a atol=1e-15 @test A(1) ≈ b @test A(0.5) ≈ [0.5, 0.5] end @testset "Unit arc" begin A = arc([1,0],[0,1],1) @test A(0) ≈ [1,0] @test A(1) ≈ [0,1] @testset for t ∈ range(0,1,13) @test A(t) ≈ [cos(t*π/2), sin(t*π/2)] end end @testset "Inverted unit arc" begin A = arc([1,0],[0,1],-1) @test A(0) ≈ [1,0] @test A(1) ≈ [0,1] @testset "Inverted unit arc t=$t" for t ∈ range(0,1,13) @test A(t) ≈ [1+cos(-π/2 - t*π/2), 1+sin(-π/2 - t*π/2)] end end @testset "Quarters of unit circle" begin unitvec(θ) = [cos(θ), sin(θ)] @testset "θ ∈ ($(i)π/4, $(i+2)π/4)" for i ∈ range(0, step=1, length=8) θ = i*π/4 @testset let θ₀ = θ, θ₁ = θ+π/2, r = 1 A = arc(unitvec(θ₀), unitvec(θ₁), r) @test A(0) ≈ unitvec(θ) @test A(1/3) ≈ unitvec(θ+π/6) @test A(1/2) ≈ unitvec(θ+π/4) @test A(2/3) ≈ unitvec(θ+π/3) @test A(1) ≈ unitvec(θ+π/2) end @testset let θ₀ = θ+π/2, θ₁ = θ, r = -1 A = arc(unitvec(θ₀), unitvec(θ₁), r) @test A(0) ≈ unitvec(θ+π/2) @test A(1/3) ≈ unitvec(θ+π/3) @test A(1/2) ≈ unitvec(θ+π/4) @test A(2/3) ≈ unitvec(θ+π/6) @test A(1) ≈ unitvec(θ) end end end @test_throws DomainError arc([-1,0], [1,0], 0.7) end @testset "TransfiniteInterpolationSurface" begin @testset "Constructors" begin @test TransfiniteInterpolationSurface(t->[1,2], t->[2,1], t->[0,0], t->[1,1]) isa TransfiniteInterpolationSurface cs = polygon_edges([0,0],[1,0],[1,1],[0,1]) @test TransfiniteInterpolationSurface(cs...) isa TransfiniteInterpolationSurface end @testset "Evaluation" begin cs = polygon_edges([0,0],[1,0],[1,1],[0,1]) ti = TransfiniteInterpolationSurface(cs...) @test ti(0,0) == [0,0] @test ti([0,0]) == [0,0] @test ti(1,0) == [1,0] @test ti([1,0]) == [1,0] @test ti(1,1) == [1,1] @test ti([1,1]) == [1,1] @test ti(0,1) == [0,1] @test ti([0,1]) == [0,1] @test ti(1/2, 0) == [1/2, 0] @test ti(1/2, 1) == [1/2, 1] @test ti(0,1/2) == [0,1/2] @test ti(1,1/2) == [1,1/2] a, b, c, d = [1,0],[2,1/4],[2.5,1],[-1/3,1] cs = polygon_edges(a,b,c,d) ti = TransfiniteInterpolationSurface(cs...) @test ti(0,0) == a @test ti(1,0) == b @test ti(1,1) == c @test ti(0,1) == d @test ti(1/2, 0) == (a+b)/2 @test ti(1/2, 1) == (c+d)/2 @test ti(0, 1/2) == (a+d)/2 @test ti(1, 1/2) == (b+c)/2 a, b, c, d = [0,0],[1,1/2],[1,3/2],[0,1] ti = TransfiniteInterpolationSurface( t->@SVector[t, t^2/2], LineSegment(b,c), LineSegment(c,d), LineSegment(d,a), ) @test ti(0,0) == a @test ti(1,0) == b @test ti(1,1) == c @test ti(0,1) == d @test ti(1/2, 0) == [1/2, 1/8] @test ti(1/2, 1) == (c+d)/2 @test ti(0, 1/2) == (a+d)/2 @test ti(1, 1/2) == (b+c)/2 end @testset "check_transfiniteinterpolation" begin cs = polygon_edges([0,0],[1,0],[1,1],[0,1]) ti = TransfiniteInterpolationSurface(cs...) @test check_transfiniteinterpolation(ti) == nothing @test check_transfiniteinterpolation(Bool, ti) == true bad_sides = [ LineSegment([0,0],[1/2,0]), LineSegment([1,0],[1,1/2]), LineSegment([1,1],[0,1/2]), LineSegment([0,1],[0,1/2]), ] s1 = TransfiniteInterpolationSurface(bad_sides[1],cs[2],cs[3],cs[4]) s2 = TransfiniteInterpolationSurface(cs[1],bad_sides[2],cs[3],cs[4]) s3 = TransfiniteInterpolationSurface(cs[1],cs[2],bad_sides[3],cs[4]) s4 = TransfiniteInterpolationSurface(cs[1],cs[2],cs[3],bad_sides[4]) @test check_transfiniteinterpolation(Bool, s1) == false @test check_transfiniteinterpolation(Bool, s2) == false @test check_transfiniteinterpolation(Bool, s3) == false @test check_transfiniteinterpolation(Bool, s4) == false @test_throws ArgumentError check_transfiniteinterpolation(s1) @test_throws ArgumentError check_transfiniteinterpolation(s2) @test_throws ArgumentError check_transfiniteinterpolation(s3) @test_throws ArgumentError check_transfiniteinterpolation(s4) end @testset "Grids.jacobian" begin cs = polygon_edges([0,0],[1,0],[1,1],[0,1]) ti = TransfiniteInterpolationSurface(cs...) @test Grids.jacobian(ti, [0,0]) isa SMatrix @test Grids.jacobian(ti, [0,0]) == [1 0; 0 1] @test Grids.jacobian(ti, [1,0]) == [1 0; 0 1] @test Grids.jacobian(ti, [1,1]) == [1 0; 0 1] @test Grids.jacobian(ti, [0,1]) == [1 0; 0 1] @test Grids.jacobian(ti, [1/2, 0]) == [1 0; 0 1] @test Grids.jacobian(ti, [1/2, 1]) == [1 0; 0 1] @test Grids.jacobian(ti, [0,1/2]) == [1 0; 0 1] @test Grids.jacobian(ti, [1,1/2]) == [1 0; 0 1] a, b, c, d = [1,0],[2,1/4],[2.5,1],[-1/3,1] cs = polygon_edges(a,b,c,d) ti = TransfiniteInterpolationSurface(cs...) @test Grids.jacobian(ti, [0,0]) == [b-a d-a] @test Grids.jacobian(ti, [1,0]) == [b-a c-b] @test Grids.jacobian(ti, [1,1]) == [c-d c-b] @test Grids.jacobian(ti, [0,1]) == [c-d d-a] mid(x,y) = (x+y)/2 @test Grids.jacobian(ti, [1/2, 0]) ≈ [b-a mid(c,d)-mid(a,b)] @test Grids.jacobian(ti, [1/2, 1]) ≈ [c-d mid(c,d)-mid(a,b)] @test Grids.jacobian(ti, [0, 1/2]) ≈ [mid(b,c)-mid(a,d) d-a] @test Grids.jacobian(ti, [1, 1/2]) ≈ [mid(b,c)-mid(a,d) c-b] end end