Mercurial > repos > public > sbplib_julia
view src/SbpOperators/volumeops/laplace/laplace.jl @ 647:f13d45c10f55 feature/volume_and_boundary_operators
Remove ConstantStencilOperator
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 04 Jan 2021 18:38:21 +0100 |
parents | a85db383484f |
children | d6edde60909b |
line wrap: on
line source
""" Laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) Creates the Laplace ooperator operator `Δ` as a `TensorMapping` `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` for the points in the closure regions. On a one-dimensional `grid`, `Δ` is a `SecondDerivative`. On a multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `SecondDerivative`s where the sum is carried out lazily. """ function Laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) where Dim Δ = SecondDerivative(grid, inner_stencil, closure_stencils, 1) for d = 2:Dim Δ += SecondDerivative(grid, inner_stencil, closure_stencils, d) end return Δ end export Laplace # quadrature(L::Laplace) = Quadrature(L.op, L.grid) # inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid) # boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId) # normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId) # boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId) # """ # BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} # # Implements the boundary operator `q` as a TensorOperator # """ # export BoundaryQuadrature # struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} # op::D2{T,N,M,K} # grid::EquidistantGrid{2} # bId::CartesianBoundary # end # # # # TODO: Make this independent of dimension # function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T # h = spacing(q.grid)[3-dim(q.bId)] # N = size(v) # return apply_quadrature(q.op, h, v[I[1]], I[1], N[1]) # end # # LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I) # # # # # struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end # # function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid} # e = boundary_value(L, Bid()) # d = normal_derivative(L, Bid()) # Hᵧ = boundary_quadrature(L, Bid()) # H⁻¹ = inverse_quadrature(L) # return (-H⁻¹*e*Hᵧ*(d'*v - g))[I] # end # # struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition # tau::Float64 # end # # function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid} # e = boundary_value(L, Bid()) # d = normal_derivative(L, Bid()) # Hᵧ = boundary_quadrature(L, Bid()) # H⁻¹ = inverse_quadrature(L) # return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I] # # Need to handle scalar multiplication and addition of TensorMapping # end # function apply(s::MyWaveEq{D}, v::AbstractArray{T,D}, i::CartesianIndex{D}) where D # return apply(s.L, v, i) + # sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau), v, s.g_w, i) + # sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau), v, s.g_e, i) + # sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau), v, s.g_s, i) + # sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau), v, s.g_n, i) # end