Mercurial > repos > public > sbplib_julia
view src/SbpOperators/volumeops/laplace/laplace.jl @ 1589:b22b9097d907 feature/sbp_operators/laplace_curvilinear
Add LinearAlgebra to Grids and fix a typo
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 26 Apr 2024 23:37:29 +0200 |
parents | d359d0d7fb12 |
children | 4f6f5e5daa35 |
line wrap: on
line source
""" Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} The Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a `LazyTensor`. """ struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} D::TM # Difference operator stencil_set::StencilSet # Stencil set of the operator end """ Laplace(g::Grid, stencil_set::StencilSet) Creates the `Laplace` operator `Δ` on `g` given `stencil_set`. See also [`laplace`](@ref). """ function Laplace(g::Grid, stencil_set::StencilSet) Δ = laplace(g, stencil_set) return Laplace(Δ, stencil_set) end LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. # Base.show(io::IO, L::Laplace) = ... """ laplace(g::Grid, stencil_set) Creates the Laplace operator operator `Δ` as a `LazyTensor` on `g`. `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `g`. The approximation depends on the type of grid and the stencil set. See also: [`second_derivative`](@ref). """ function laplace end function laplace(g::TensorGrid, stencil_set) # return mapreduce(+, enumerate(g.grids)) do (i, gᵢ) # Δᵢ = laplace(gᵢ, stencil_set) # LazyTensors.inflate(Δᵢ, size(g), i) # end Δ = LazyTensors.inflate(laplace(g.grids[1], stencil_set), size(g), 1) for d = 2:ndims(g) Δ += LazyTensors.inflate(laplace(g.grids[d], stencil_set), size(g), d) end return Δ end laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) function laplace(grid::MappedGrid, stencil_set) J = jacobian_determinant(grid) J⁻¹ = DiagonalTensor(map(inv, J)) Jg = map(*, J, geometric_tensor_inverse(grid)) lg = logicalgrid(grid) return mapreduce(+, CartesianIndices(first(Jg))) do I i,j = I[1], I[2] Jgⁱʲ = componentview(Jg, I[1], I[2]) if i == j J⁻¹∘second_derivative_variable(lg, Jgⁱʲ, stencil_set, i) else Dᵢ = first_derivative(lg, stencil_set, i) Dⱼ = first_derivative(lg, stencil_set, j) J⁻¹∘Dᵢ∘DiagonalTensor(Jgⁱʲ)∘Dⱼ end end end