Mercurial > repos > public > sbplib_julia
view src/SbpOperators/volumeops/laplace/laplace.jl @ 1608:8315c456e3b4 feature/boundary_conditions
Simplify parsing of constants from stencil set
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sun, 09 Jun 2024 00:17:44 +0200 |
parents | 7216448d0c5a |
children | e41eddc640f3 |
line wrap: on
line source
""" Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} The Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a `LazyTensor`. """ struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} D::TM # Difference operator stencil_set::StencilSet # Stencil set of the operator end """ Laplace(g::Grid, stencil_set::StencilSet) Creates the `Laplace` operator `Δ` on `g` given `stencil_set`. See also [`laplace`](@ref). """ function Laplace(g::Grid, stencil_set::StencilSet) Δ = laplace(g, stencil_set) return Laplace(Δ, stencil_set) end LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. # Base.show(io::IO, L::Laplace) = ... """ laplace(g::Grid, stencil_set) Creates the Laplace operator operator `Δ` as a `LazyTensor` on `g`. `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `g`. The approximation depends on the type of grid and the stencil set. See also: [`second_derivative`](@ref). """ function laplace end function laplace(g::TensorGrid, stencil_set) # return mapreduce(+, enumerate(g.grids)) do (i, gᵢ) # Δᵢ = laplace(gᵢ, stencil_set) # LazyTensors.inflate(Δᵢ, size(g), i) # end Δ = LazyTensors.inflate(laplace(g.grids[1], stencil_set), size(g), 1) for d = 2:ndims(g) Δ += LazyTensors.inflate(laplace(g.grids[d], stencil_set), size(g), d) end return Δ end laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) """ sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; tuning) The operators required to construct the SAT for imposing a Dirichlet condition. `tuning` specifies the strength of the penalty. See See also: [`sat`,`DirichletCondition`, `positivity_decomposition`](@ref). """ function sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning = 1., R_tuning = 1.) id = boundary(bc) set = Δ.stencil_set H⁻¹ = inverse_inner_product(g,set) Hᵧ = inner_product(boundary_grid(g, id), set) e = boundary_restriction(g, set, id) d = normal_derivative(g, set, id) B = positivity_decomposition(Δ, g, bc; H_tuning, R_tuning) penalty_tensor = H⁻¹∘(d' - B*e')∘Hᵧ return penalty_tensor, e end """ sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) The operators required to construct the SAT for imposing a Neumann condition See also: [`sat`,`NeumannCondition`](@ref). """ function sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) id = boundary(bc) set = Δ.stencil_set H⁻¹ = inverse_inner_product(g,set) Hᵧ = inner_product(boundary_grid(g, id), set) e = boundary_restriction(g, set, id) d = normal_derivative(g, set, id) penalty_tensor = -H⁻¹∘e'∘Hᵧ return penalty_tensor, d end function positivity_decomposition(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning, R_tuning) Nτ_H, τ_R = positivity_limits(Δ,g,bc) return H_tuning*Nτ_H + R_tuning*τ_R end # TODO: We should consider implementing a proper BoundaryIdentifier for EquidistantGrid and then # change bc::BoundaryCondition to id::BoundaryIdentifier function positivity_limits(Δ::Laplace, g::EquidistantGrid, bc::DirichletCondition) h = spacing(g) θ_H = parse_scalar(Δ.stencil_set["H"]["closure"][1]) θ_R = parse_scalar(Δ.stencil_set["D2"]["positivity"]["theta_R"]) τ_H = 1/(h*θ_H) τ_R = 1/(h*θ_R) return τ_H, τ_R end function positivity_limits(Δ::Laplace, g::TensorGrid, bc::DirichletCondition) τ_H, τ_R = positivity_limits(Δ, g.grids[grid_id(boundary(bc))], bc) return τ_H*ndims(g), τ_R end