Mercurial > repos > public > sbplib_julia
view SbpOperators/src/InverseQuadrature.jl @ 322:777063b6f049
Dispatch applys on vararg Index instead of tuples
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 09 Sep 2020 21:42:55 +0200 |
parents | bd09d67ebb22 |
children | 9cc5d1498b2d |
line wrap: on
line source
""" InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} Implements the inverse quadrature operator `Qi` of Dim dimension as a TensorOperator The multi-dimensional tensor operator consists of a tuple of 1D InverseDiagonalNorm tensor operators. """ export InverseQuadrature struct InverseQuadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} Hi::NTuple{Dim,InverseDiagonalNorm{T,N,M}} end LazyTensors.domain_size(Qi::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size function LazyTensors.apply(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} error("not implemented") end LazyTensors.apply_transpose(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I) @inline function LazyTensors.apply(Qi::InverseQuadrature{1,T}, v::AbstractVector{T}, I::Index) where T @inbounds q = apply(Qi.Hi[1], v , I) return q end @inline function LazyTensors.apply(Qi::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T # InverseQuadrature in x direction @inbounds vx = view(v, :, Int(J)) @inbounds qx_inv = apply(Qi.Hi[1], vx , I) # InverseQuadrature in y-direction @inbounds vy = view(v, Int(I), :) @inbounds qy_inv = apply(Qi.Hi[2], vy, J) return qx_inv*qy_inv end """ InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} Implements the quadrature operator `Hi` of Dim dimension as a TensorMapping """ export InverseDiagonalNorm, closuresize struct InverseDiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1} h_inv::T # The reciprocl grid spacing could be included in the stencil already. Preferable? closure::NTuple{M,T} #TODO: Write a nice constructor end @inline function LazyTensors.apply(Hi::InverseDiagonalNorm{T}, v::AbstractVector{T}, I:Index) where T return @inbounds apply(Hi, v, I) end LazyTensors.apply_transpose(Hi::InverseQuadrature{Dim,T}, v::AbstractArray{T,2}, I::Index) where T = LazyTensors.apply(Hi,v,I) @inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, I::Index{Lower}) where T return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(I)] end @inline LazyTensors.apply(Hi::InverseDiagonalNorm,v::AbstractVector{T}, I::Index{Upper}) where T N = length(v); return @inbounds Hi.h_inv*Hi.closure[N-Int(I)+1]v[Int(I)] end @inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, I::Index{Interior}) where T return @inbounds Hi.h_inv*v[Int(I)] end function LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T N = length(v); r = getregion(Int(index), closuresize(Hi), N) i = Index(Int(index), r) return LazyTensors.apply(Hi, v, i) end export LazyTensors.apply function closuresize(Hi::InverseDiagonalNorm{T<:Real,N,M}) where {T,N,M} return M end