Mercurial > repos > public > sbplib_julia
comparison SbpOperators/src/InverseQuadrature.jl @ 322:777063b6f049
Dispatch applys on vararg Index instead of tuples
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 09 Sep 2020 21:42:55 +0200 |
parents | bd09d67ebb22 |
children | 9cc5d1498b2d |
comparison
equal
deleted
inserted
replaced
315:7a7d9daa9eb7 | 322:777063b6f049 |
---|---|
10 Hi::NTuple{Dim,InverseDiagonalNorm{T,N,M}} | 10 Hi::NTuple{Dim,InverseDiagonalNorm{T,N,M}} |
11 end | 11 end |
12 | 12 |
13 LazyTensors.domain_size(Qi::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size | 13 LazyTensors.domain_size(Qi::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size |
14 | 14 |
15 function LazyTensors.apply(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} | 15 function LazyTensors.apply(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} |
16 error("not implemented") | 16 error("not implemented") |
17 end | 17 end |
18 | 18 |
19 LazyTensors.apply_transpose(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I) | 19 LazyTensors.apply_transpose(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I) |
20 | 20 |
21 @inline function LazyTensors.apply(Qi::InverseQuadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T | 21 @inline function LazyTensors.apply(Qi::InverseQuadrature{1,T}, v::AbstractVector{T}, I::Index) where T |
22 @inbounds q = apply(Qi.Hi[1], v , I[1]) | 22 @inbounds q = apply(Qi.Hi[1], v , I) |
23 return q | 23 return q |
24 end | 24 end |
25 | 25 |
26 @inline function LazyTensors.apply(Qi::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T | 26 @inline function LazyTensors.apply(Qi::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T |
27 # InverseQuadrature in x direction | 27 # InverseQuadrature in x direction |
28 @inbounds vx = view(v, :, Int(I[2])) | 28 @inbounds vx = view(v, :, Int(J)) |
29 @inbounds qx_inv = apply(Qi.Hi[1], vx , I[1]) | 29 @inbounds qx_inv = apply(Qi.Hi[1], vx , I) |
30 # InverseQuadrature in y-direction | 30 # InverseQuadrature in y-direction |
31 @inbounds vy = view(v, Int(I[1]), :) | 31 @inbounds vy = view(v, Int(I), :) |
32 @inbounds qy_inv = apply(Qi.Hi[2], vy, I[2]) | 32 @inbounds qy_inv = apply(Qi.Hi[2], vy, J) |
33 return qx_inv*qy_inv | 33 return qx_inv*qy_inv |
34 end | 34 end |
35 | 35 |
36 """ | 36 """ |
37 InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} | 37 InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} |
43 h_inv::T # The reciprocl grid spacing could be included in the stencil already. Preferable? | 43 h_inv::T # The reciprocl grid spacing could be included in the stencil already. Preferable? |
44 closure::NTuple{M,T} | 44 closure::NTuple{M,T} |
45 #TODO: Write a nice constructor | 45 #TODO: Write a nice constructor |
46 end | 46 end |
47 | 47 |
48 @inline function LazyTensors.apply(Hi::InverseDiagonalNorm{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T | 48 @inline function LazyTensors.apply(Hi::InverseDiagonalNorm{T}, v::AbstractVector{T}, I:Index) where T |
49 return @inbounds apply(Hi, v, I[1]) | 49 return @inbounds apply(Hi, v, I) |
50 end | 50 end |
51 | 51 |
52 LazyTensors.apply_transpose(Hi::InverseQuadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(Hi,v,I) | 52 LazyTensors.apply_transpose(Hi::InverseQuadrature{Dim,T}, v::AbstractArray{T,2}, I::Index) where T = LazyTensors.apply(Hi,v,I) |
53 | 53 |
54 @inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, i::Index{Lower}) where T | 54 @inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, I::Index{Lower}) where T |
55 return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)] | 55 return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(I)] |
56 end | 56 end |
57 @inline LazyTensors.apply(Hi::InverseDiagonalNorm,v::AbstractVector{T}, i::Index{Upper}) where T | 57 @inline LazyTensors.apply(Hi::InverseDiagonalNorm,v::AbstractVector{T}, I::Index{Upper}) where T |
58 N = length(v); | 58 N = length(v); |
59 return @inbounds Hi.h_inv*Hi.closure[N-Int(i)+1]v[Int(i)] | 59 return @inbounds Hi.h_inv*Hi.closure[N-Int(I)+1]v[Int(I)] |
60 end | 60 end |
61 | 61 |
62 @inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, i::Index{Interior}) where T | 62 @inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, I::Index{Interior}) where T |
63 return @inbounds Hi.h_inv*v[Int(i)] | 63 return @inbounds Hi.h_inv*v[Int(I)] |
64 end | 64 end |
65 | 65 |
66 function LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T | 66 function LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T |
67 N = length(v); | 67 N = length(v); |
68 r = getregion(Int(index), closuresize(Hi), N) | 68 r = getregion(Int(index), closuresize(Hi), N) |