view src/Grids/equidistant_grid.jl @ 1222:5f677cd6f0b6 refactor/grids

Start refactoring
author Jonatan Werpers <jonatan@werpers.com>
date Sat, 18 Feb 2023 11:37:35 +0100
parents 50b008d2e937
children 2abec782cf5b
line wrap: on
line source

struct EquidistantGrid{T,R<:AbstractRange{T}} <: Grid{T,1,1}
    points::R
end

Base.eltype(g::EquidistantGrid{T}) where T = T
Base.getindex(g::EquidistantGrid, i) = g.points[i]
Base.size(g::EquidistantGrid) = size(g.points)
Base.length(g::EquidistantGrid) = length(g.points)
Base.eachindex(g::EquidistantGrid) = eachindex(g.points)

# TODO: Make sure collect works!


"""
    spacing(grid::EquidistantGrid)

The spacing between grid points.
"""
spacing(g::EquidistantGrid) = step(g.points)


"""
    inverse_spacing(grid::EquidistantGrid)

The reciprocal of the spacing between grid points.
"""
inverse_spacing(g::EquidistantGrid) = 1/step(g.points)


boundary_identifiers(::EquidistantGrid) = (Lower(), Upper())
boundary_grid(g::EquidistantGrid, id::Lower) = ZeroDimGrid(g[begin])
boundary_grid(g::EquidistantGrid, id::Upper) = ZeroDimGrid(g[end])


"""
    refine(g::EquidistantGrid, r::Int)

Refines `grid` by a factor `r`. The factor is applied to the number of
intervals which is 1 less than the size of the grid.

See also: [`coarsen`](@ref)
"""
function refine(g::EquidistantGrid, r::Int)
    new_sz = (length(g) - 1)*r + 1
    return EquidistantGrid(change_length(g.points, new_sz))
end

"""
    coarsen(grid::EquidistantGrid, r::Int)

Coarsens `grid` by a factor `r`. The factor is applied to the number of
intervals which is 1 less than the size of the grid. If the number of
intervals are not divisible by `r` an error is raised.

See also: [`refine`](@ref)
"""
function coarsen(g::EquidistantGrid, r::Int)
    if (length(g)-1)%r != 0
        throw(DomainError(r, "Size minus 1 must be divisible by the ratio."))
    end

    new_sz = (length(g) - 1)÷r + 1

    return EquidistantGrid(change_length(g.points), new_sz)
end







"""
    equidistant_grid(size::Dims, limit_lower, limit_upper)

Construct an equidistant grid with corners at the coordinates `limit_lower` and
`limit_upper`.

The length of the domain sides are given by the components of
`limit_upper-limit_lower`. E.g for a 2D grid with `limit_lower=(-1,0)` and `limit_upper=(1,2)` the domain is defined
as `(-1,1)x(0,2)`. The side lengths of the grid are not allowed to be negative.

The number of equidistantly spaced points in each coordinate direction are given
by the tuple `size`.
"""
function equidistant_grid(size::Dims, limit_lower, limit_upper)
    gs = map(size, limit_lower, limit_upper) do s,l,u
        EquidistantGrid(range(l, u, length=s)) # TBD: Should it use LinRange instead?
    end

    return TensorGrid(gs...)
end


"""
    equidistant_grid(size::Int, limit_lower::T, limit_upper::T)

Constructs a 1D equidistant grid.
"""
function equidistant_grid(size::Int, limit_lower::T, limit_upper::T) where T
	return equidistant_grid((size,),(limit_lower,),(limit_upper,))
end



"""
    change_length(::AbstractRange, n)

Change the length of a range to `n`, keeping the same start and stop.
"""
function change_length(::AbstractRange, n) end

change_length(r::LinRange, n) = LinRange(r[begin], r[end], n)
change_length(r::StepRangeLen, n) = range(r[begin], r[end], n)
# TODO: Test the above