Mercurial > repos > public > sbplib_julia
comparison src/Grids/equidistant_grid.jl @ 1222:5f677cd6f0b6 refactor/grids
Start refactoring
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sat, 18 Feb 2023 11:37:35 +0100 |
parents | 50b008d2e937 |
children | 2abec782cf5b |
comparison
equal
deleted
inserted
replaced
1221:b3b4d29b46c3 | 1222:5f677cd6f0b6 |
---|---|
1 struct EquidistantGrid{T,R<:AbstractRange{T}} <: Grid{T,1,1} | |
2 points::R | |
3 end | |
4 | |
5 Base.eltype(g::EquidistantGrid{T}) where T = T | |
6 Base.getindex(g::EquidistantGrid, i) = g.points[i] | |
7 Base.size(g::EquidistantGrid) = size(g.points) | |
8 Base.length(g::EquidistantGrid) = length(g.points) | |
9 Base.eachindex(g::EquidistantGrid) = eachindex(g.points) | |
10 | |
11 # TODO: Make sure collect works! | |
12 | |
13 | |
1 """ | 14 """ |
2 EquidistantGrid{Dim,T<:Real} <: Grid | 15 spacing(grid::EquidistantGrid) |
3 | 16 |
4 `Dim`-dimensional equidistant grid with coordinates of type `T`. | 17 The spacing between grid points. |
5 """ | 18 """ |
6 struct EquidistantGrid{Dim,T<:Real} <: Grid | 19 spacing(g::EquidistantGrid) = step(g.points) |
7 size::NTuple{Dim, Int} | |
8 limit_lower::NTuple{Dim, T} | |
9 limit_upper::NTuple{Dim, T} | |
10 | 20 |
11 function EquidistantGrid{Dim,T}(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where {Dim,T} | 21 |
12 if any(size .<= 0) | 22 """ |
13 throw(DomainError("all components of size must be postive")) | 23 inverse_spacing(grid::EquidistantGrid) |
14 end | 24 |
15 if any(limit_upper.-limit_lower .<= 0) | 25 The reciprocal of the spacing between grid points. |
16 throw(DomainError("all side lengths must be postive")) | 26 """ |
17 end | 27 inverse_spacing(g::EquidistantGrid) = 1/step(g.points) |
18 return new{Dim,T}(size, limit_lower, limit_upper) | 28 |
19 end | 29 |
30 boundary_identifiers(::EquidistantGrid) = (Lower(), Upper()) | |
31 boundary_grid(g::EquidistantGrid, id::Lower) = ZeroDimGrid(g[begin]) | |
32 boundary_grid(g::EquidistantGrid, id::Upper) = ZeroDimGrid(g[end]) | |
33 | |
34 | |
35 """ | |
36 refine(g::EquidistantGrid, r::Int) | |
37 | |
38 Refines `grid` by a factor `r`. The factor is applied to the number of | |
39 intervals which is 1 less than the size of the grid. | |
40 | |
41 See also: [`coarsen`](@ref) | |
42 """ | |
43 function refine(g::EquidistantGrid, r::Int) | |
44 new_sz = (length(g) - 1)*r + 1 | |
45 return EquidistantGrid(change_length(g.points, new_sz)) | |
20 end | 46 end |
21 | 47 |
22 """ | 48 """ |
23 EquidistantGrid(size, limit_lower, limit_upper) | 49 coarsen(grid::EquidistantGrid, r::Int) |
50 | |
51 Coarsens `grid` by a factor `r`. The factor is applied to the number of | |
52 intervals which is 1 less than the size of the grid. If the number of | |
53 intervals are not divisible by `r` an error is raised. | |
54 | |
55 See also: [`refine`](@ref) | |
56 """ | |
57 function coarsen(g::EquidistantGrid, r::Int) | |
58 if (length(g)-1)%r != 0 | |
59 throw(DomainError(r, "Size minus 1 must be divisible by the ratio.")) | |
60 end | |
61 | |
62 new_sz = (length(g) - 1)÷r + 1 | |
63 | |
64 return EquidistantGrid(change_length(g.points), new_sz) | |
65 end | |
66 | |
67 | |
68 | |
69 | |
70 | |
71 | |
72 | |
73 """ | |
74 equidistant_grid(size::Dims, limit_lower, limit_upper) | |
24 | 75 |
25 Construct an equidistant grid with corners at the coordinates `limit_lower` and | 76 Construct an equidistant grid with corners at the coordinates `limit_lower` and |
26 `limit_upper`. | 77 `limit_upper`. |
27 | 78 |
28 The length of the domain sides are given by the components of | 79 The length of the domain sides are given by the components of |
30 as `(-1,1)x(0,2)`. The side lengths of the grid are not allowed to be negative. | 81 as `(-1,1)x(0,2)`. The side lengths of the grid are not allowed to be negative. |
31 | 82 |
32 The number of equidistantly spaced points in each coordinate direction are given | 83 The number of equidistantly spaced points in each coordinate direction are given |
33 by the tuple `size`. | 84 by the tuple `size`. |
34 """ | 85 """ |
35 function EquidistantGrid(size, limit_lower, limit_upper) | 86 function equidistant_grid(size::Dims, limit_lower, limit_upper) |
36 return EquidistantGrid{length(size), eltype(limit_lower)}(size, limit_lower, limit_upper) | 87 gs = map(size, limit_lower, limit_upper) do s,l,u |
37 end | 88 EquidistantGrid(range(l, u, length=s)) # TBD: Should it use LinRange instead? |
89 end | |
38 | 90 |
39 """ | 91 return TensorGrid(gs...) |
40 EquidistantGrid{T}() | |
41 | |
42 Constructs a 0-dimensional grid. | |
43 """ | |
44 EquidistantGrid{T}() where T = EquidistantGrid{0,T}((),(),()) # Convenience constructor for 0-dim grid | |
45 | |
46 | |
47 """ | |
48 EquidistantGrid(size::Int, limit_lower::T, limit_upper::T) | |
49 | |
50 Convenience constructor for 1D grids. | |
51 """ | |
52 function EquidistantGrid(size::Int, limit_lower::T, limit_upper::T) where T | |
53 return EquidistantGrid((size,),(limit_lower,),(limit_upper,)) | |
54 end | |
55 | |
56 Base.eltype(grid::EquidistantGrid{Dim,T}) where {Dim,T} = T | |
57 | |
58 Base.eachindex(grid::EquidistantGrid) = CartesianIndices(grid.size) | |
59 | |
60 Base.size(g::EquidistantGrid) = g.size | |
61 | |
62 Base.ndims(::EquidistantGrid{Dim}) where Dim = Dim | |
63 | |
64 function Base.getindex(g::EquidistantGrid, I::Vararg{Int}) | |
65 h = spacing(g) | |
66 return g.limit_lower .+ (I.-1).*h | |
67 end | |
68 | |
69 Base.getindex(g::EquidistantGrid, I::CartesianIndex) = g[Tuple(I)...] | |
70 | |
71 # Review: | |
72 # Is it not strange that evalOn(::Grid) is non-lazy while evalOn(::EquidistantGrid) is? | |
73 # Also: Change name to evalon or eval_on!!!!!! | |
74 function evalOn(grid::EquidistantGrid, f::Function) | |
75 F(I...) = f(grid[I...]...) | |
76 | |
77 return LazyFunctionArray(F, size(grid)) | |
78 end | |
79 | |
80 """ | |
81 spacing(grid::EquidistantGrid) | |
82 | |
83 The spacing between grid points. | |
84 """ | |
85 spacing(grid::EquidistantGrid) = (grid.limit_upper.-grid.limit_lower)./(grid.size.-1) | |
86 | |
87 | |
88 """ | |
89 inverse_spacing(grid::EquidistantGrid) | |
90 | |
91 The reciprocal of the spacing between grid points. | |
92 """ | |
93 inverse_spacing(grid::EquidistantGrid) = 1 ./ spacing(grid) | |
94 | |
95 | |
96 """ | |
97 points(grid::EquidistantGrid) | |
98 | |
99 The point of the grid as an array of tuples with the same dimension as the grid. | |
100 The points are stored as [(x1,y1), (x1,y2), … (x1,yn); | |
101 (x2,y1), (x2,y2), … (x2,yn); | |
102 ⋮ ⋮ ⋮ | |
103 (xm,y1), (xm,y2), … (xm,yn)] | |
104 """ | |
105 function points(grid::EquidistantGrid) | |
106 indices = Tuple.(CartesianIndices(grid.size)) | |
107 h = spacing(grid) | |
108 return broadcast(I -> grid.limit_lower .+ (I.-1).*h, indices) | |
109 end | |
110 | |
111 """ | |
112 restrict(::EquidistantGrid, dim) | |
113 | |
114 Pick out given dimensions from the grid and return a grid for them. | |
115 """ | |
116 function restrict(grid::EquidistantGrid, dim) | |
117 size = grid.size[dim] | |
118 limit_lower = grid.limit_lower[dim] | |
119 limit_upper = grid.limit_upper[dim] | |
120 | |
121 return EquidistantGrid(size, limit_lower, limit_upper) | |
122 end | 92 end |
123 | 93 |
124 | 94 |
125 """ | 95 """ |
126 orthogonal_dims(grid::EquidistantGrid,dim) | 96 equidistant_grid(size::Int, limit_lower::T, limit_upper::T) |
127 | 97 |
128 Returns the dimensions of grid orthogonal to that of dim. | 98 Constructs a 1D equidistant grid. |
129 """ | 99 """ |
130 function orthogonal_dims(grid::EquidistantGrid, dim) | 100 function equidistant_grid(size::Int, limit_lower::T, limit_upper::T) where T |
131 orth_dims = filter(i -> i != dim, dims(grid)) | 101 return equidistant_grid((size,),(limit_lower,),(limit_upper,)) |
132 if orth_dims == dims(grid) | |
133 throw(DomainError(string("dimension ",string(dim)," not matching grid"))) | |
134 end | |
135 return orth_dims | |
136 end | 102 end |
137 | 103 |
138 | 104 |
139 """ | |
140 boundary_identifiers(::EquidistantGrid) | |
141 | |
142 Returns a tuple containing the boundary identifiers for the grid, stored as | |
143 (CartesianBoundary(1,Lower), | |
144 CartesianBoundary(1,Upper), | |
145 CartesianBoundary(2,Lower), | |
146 ...) | |
147 """ | |
148 boundary_identifiers(g::EquidistantGrid) = (((ntuple(i->(CartesianBoundary{i,Lower}(),CartesianBoundary{i,Upper}()),ndims(g)))...)...,) | |
149 | |
150 | 105 |
151 """ | 106 """ |
152 boundary_grid(grid::EquidistantGrid, id::CartesianBoundary) | 107 change_length(::AbstractRange, n) |
153 | 108 |
154 Creates the lower-dimensional restriciton of `grid` spanned by the dimensions | 109 Change the length of a range to `n`, keeping the same start and stop. |
155 orthogonal to the boundary specified by `id`. The boundary grid of a 1-dimensional | |
156 grid is a zero-dimensional grid. | |
157 """ | 110 """ |
158 function boundary_grid(grid::EquidistantGrid, id::CartesianBoundary) | 111 function change_length(::AbstractRange, n) end |
159 orth_dims = orthogonal_dims(grid, dim(id)) | |
160 return restrict(grid, orth_dims) | |
161 end | |
162 boundary_grid(::EquidistantGrid{1,T},::CartesianBoundary{1}) where T = EquidistantGrid{T}() | |
163 | 112 |
164 | 113 change_length(r::LinRange, n) = LinRange(r[begin], r[end], n) |
165 """ | 114 change_length(r::StepRangeLen, n) = range(r[begin], r[end], n) |
166 refine(grid::EquidistantGrid, r::Int) | 115 # TODO: Test the above |
167 | |
168 Refines `grid` by a factor `r`. The factor is applied to the number of | |
169 intervals which is 1 less than the size of the grid. | |
170 | |
171 See also: [`coarsen`](@ref) | |
172 """ | |
173 function refine(grid::EquidistantGrid, r::Int) | |
174 sz = size(grid) | |
175 new_sz = (sz .- 1).*r .+ 1 | |
176 return EquidistantGrid{ndims(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper) | |
177 end | |
178 | |
179 | |
180 """ | |
181 coarsen(grid::EquidistantGrid, r::Int) | |
182 | |
183 Coarsens `grid` by a factor `r`. The factor is applied to the number of | |
184 intervals which is 1 less than the size of the grid. If the number of | |
185 intervals are not divisible by `r` an error is raised. | |
186 | |
187 See also: [`refine`](@ref) | |
188 """ | |
189 function coarsen(grid::EquidistantGrid, r::Int) | |
190 sz = size(grid) | |
191 | |
192 if !all(n -> (n % r == 0), sz.-1) | |
193 throw(DomainError(r, "Size minus 1 must be divisible by the ratio.")) | |
194 end | |
195 | |
196 new_sz = (sz .- 1).÷r .+ 1 | |
197 | |
198 return EquidistantGrid{ndims(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper) | |
199 end |