Mercurial > repos > public > sbplib_julia
view examples/wave_eq.jl @ 876:4f3924293894 laplace_benchmarks
Add examples and benchmarks folders
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 27 Jan 2022 11:00:31 +0100 |
parents | wave_eq.jl@7e9ebd572deb |
children |
line wrap: on
line source
using Sbplib.Grids, Sbplib.SbpOperators, Sbplib.LazyTensors, Sbplib.RegionIndices using OrdinaryDiffEq, Plots, Printf, Base.Threads function apply_tm!(f,u,tm,ind) for I in ind @inbounds f[I] = (tm*u)[I] end end function apply_tm_all_regions!(f,u,tm,rinds) apply_tm!(f,u,tm,rinds[1]) apply_tm!(f,u,tm,rinds[2]) apply_tm!(f,u,tm,rinds[3]) end region_indices(L, N, ::Lower) = map(x->Index{Lower}(x),1:closure_size(L)) region_indices(L, N, ::Interior) = map(x->Index{Interior}(x),closure_size(L)+1:N-closure_size(L)) region_indices(L, N, ::Upper) = map(x->Index{Upper}(x),N-closure_size(L)+1:N) function get_region_indices(L,N) ind_lower = region_indices(L, N, Lower()) ind_interior = region_indices(L, N, Interior()) ind_upper = region_indices(L, N, Upper()) return (ind_lower, ind_interior, ind_upper) end function wave_eq_sim(alg,T,CFL) # Domain N = 101 g = EquidistantGrid(N,0.,1.) dx = min(spacing(g)...) # Spatial discretization Δ = Laplace(g,sbp_operators_path()*"standard_diagonal.toml"; order=4) (id_l, id_r) = boundary_identifiers(g) SAT_l = boundary_condition(Δ,id_l,NeumannBC()) SAT_r = boundary_condition(Δ,id_r,NeumannBC()) tm = (Δ + SAT_l + SAT_r) # RHS function rinds = get_region_indices(Δ,N) function f(du,u,p,t) du[1:N] .= u[N+1:end] apply_tm_all_regions!(view(du,N+1:2*N), view(u,1:N), tm, rinds) end # Initial condition sigma = 0.1 ic_u = x->1/(sigma*sqrt(2*pi))*exp(-1/2*((x-0.5)^2/sigma^2)) ic_u_t = x->0 w0 = [evalOn(g,ic_u); evalOn(g,ic_u_t)] # Setup ODE and solve tspan = (0.,T) prob = ODEProblem(f,w0,tspan) sol = solve(prob, alg, dt=CFL*dx, saveat=0.05) # Plotting x = [x[1] for x in points(g)] anim = @animate for i ∈ eachindex(sol.t) u_i = sol.u[i] plot(x, u_i[1:N], ylims = (0,4), lw=3,ls=:dash,label="",title=@sprintf("u at t = %.3f", sol.t[i])) end gif(anim, "wave.gif", fps = 15) end wave_eq_sim(CarpenterKennedy2N54(),1.,0.25)