view test/testDiffOps.jl @ 356:0844069ab5ff refactor/remove_dynamic_size_tensormapping

Reinclude SbpOperators and fix most of the code and tests there.
author Jonatan Werpers <jonatan@werpers.com>
date Sun, 27 Sep 2020 22:51:31 +0200
parents 2b0c9b30ea3b
children ffddaf053085
line wrap: on
line source

using Test
using Sbplib.DiffOps
using Sbplib.Grids
using Sbplib.SbpOperators
using Sbplib.RegionIndices
using Sbplib.LazyTensors

@testset "DiffOps" begin

@testset "Laplace2D" begin
    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
    Lx = 3.5
    Ly = 7.2
    g = EquidistantGrid((42,41), (0.0, 0.0), (Lx,Ly))
    L = Laplace(g, 1., op)
    H = quadrature(L)

    f0(x::Float64,y::Float64) = 2.
    f1(x::Float64,y::Float64) = x+y
    f2(x::Float64,y::Float64) = 1/2*x^2 + 1/2*y^2
    f3(x::Float64,y::Float64) = 1/6*x^3 + 1/6*y^3
    f4(x::Float64,y::Float64) = 1/24*x^4 + 1/24*y^4
    f5(x::Float64,y::Float64) = sin(x) + cos(y)
    f5ₓₓ(x::Float64,y::Float64) = -f5(x,y)

    v0 = evalOn(g,f0)
    v1 = evalOn(g,f1)
    v2 = evalOn(g,f2)
    v3 = evalOn(g,f3)
    v4 = evalOn(g,f4)
    v5 = evalOn(g,f5)
    v5ₓₓ = evalOn(g,f5ₓₓ)

    @test L isa TensorOperator{T,2} where T
    @test L' isa TensorMapping{T,2,2} where T

    # TODO: Should perhaps set tolerance level for isapporx instead?
    #       Are these tolerance levels resonable or should tests be constructed
    #       differently?
    equalitytol = 0.5*1e-10
    accuracytol = 0.5*1e-3
    # 4th order interior stencil, 2nd order boundary stencil,
    # implies that L*v should be exact for v - monomial up to order 3.
    # Exact differentiation is measured point-wise. For other grid functions
    # the error is measured in the H-norm.
    @test all(abs.(collect(L*v0)) .<= equalitytol)
    @test all(abs.(collect(L*v1)) .<= equalitytol)
    @test all(collect(L*v2) .≈ v0) # Seems to be more accurate
    @test all(abs.((collect(L*v3) - v1)) .<= equalitytol)
    e4 = collect(L*v4) - v2
    e5 = collect(L*v5) - v5ₓₓ
    @test sum(collect(H*e4.^2)) <= accuracytol
    @test sum(collect(H*e5.^2)) <= accuracytol
end

@testset "Quadrature" begin
    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
    Lx = 2.3
    Ly = 5.2
    g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
    H = Quadrature(op,g)
    v = ones(Float64, size(g))

    @test H isa TensorOperator{T,2} where T
    @test H' isa TensorMapping{T,2,2} where T
    @test sum(collect(H*v)) ≈ (Lx*Ly)
    @test collect(H*v) == collect(H'*v)
end

@testset "InverseQuadrature" begin
    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
    Lx = 7.3
    Ly = 8.2
    g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
    H = Quadrature(op,g)
    Hinv = InverseQuadrature(op,g)
    v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)

    @test Hinv isa TensorOperator{T,2} where T
    @test Hinv' isa TensorMapping{T,2,2} where T
    @test collect(Hinv*H*v)  ≈ v
    @test collect(Hinv*v) == collect(Hinv'*v)
end

@testset "BoundaryValue" begin
    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
    g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0))

    e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}())
    e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}())
    e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}())
    e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}())

    v = zeros(Float64, 4, 5)
    v[:,5] = [1, 2, 3,4]
    v[:,4] = [1, 2, 3,4]
    v[:,3] = [4, 5, 6, 7]
    v[:,2] = [7, 8, 9, 10]
    v[:,1] = [10, 11, 12, 13]

    @test e_w  isa TensorMapping{T,2,1} where T
    @test e_w' isa TensorMapping{T,1,2} where T

    @test domain_size(e_w, (3,2)) == (2,)
    @test domain_size(e_e, (3,2)) == (2,)
    @test domain_size(e_s, (3,2)) == (3,)
    @test domain_size(e_n, (3,2)) == (3,)

    @test size(e_w'*v) == (5,)
    @test size(e_e'*v) == (5,)
    @test size(e_s'*v) == (4,)
    @test size(e_n'*v) == (4,)

    @test collect(e_w'*v) == [10,7,4,1.0,1]
    @test collect(e_e'*v) == [13,10,7,4,4.0]
    @test collect(e_s'*v) == [10,11,12,13.0]
    @test collect(e_n'*v) == [1,2,3,4.0]

    g_x = [1,2,3,4.0]
    g_y = [5,4,3,2,1.0]

    G_w = zeros(Float64, (4,5))
    G_w[1,:] = g_y

    G_e = zeros(Float64, (4,5))
    G_e[4,:] = g_y

    G_s = zeros(Float64, (4,5))
    G_s[:,1] = g_x

    G_n = zeros(Float64, (4,5))
    G_n[:,5] = g_x

    @test size(e_w*g_y) == (UnknownDim,5)
    @test size(e_e*g_y) == (UnknownDim,5)
    @test size(e_s*g_x) == (4,UnknownDim)
    @test size(e_n*g_x) == (4,UnknownDim)

    # These tests should be moved to where they are possible (i.e we know what the grid should be)
    @test_broken collect(e_w*g_y) == G_w
    @test_broken collect(e_e*g_y) == G_e
    @test_broken collect(e_s*g_x) == G_s
    @test_broken collect(e_n*g_x) == G_n
end

@testset "NormalDerivative" begin
    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
    g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0))

    d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}())
    d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}())
    d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}())
    d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}())


    v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)
    v∂x = evalOn(g, (x,y)-> 2*x + y)
    v∂y = evalOn(g, (x,y)-> 2*(y-1) + x)

    @test d_w  isa TensorMapping{T,2,1} where T
    @test d_w' isa TensorMapping{T,1,2} where T

    @test domain_size(d_w, (3,2)) == (2,)
    @test domain_size(d_e, (3,2)) == (2,)
    @test domain_size(d_s, (3,2)) == (3,)
    @test domain_size(d_n, (3,2)) == (3,)

    @test size(d_w'*v) == (6,)
    @test size(d_e'*v) == (6,)
    @test size(d_s'*v) == (5,)
    @test size(d_n'*v) == (5,)

    @test collect(d_w'*v) ≈ v∂x[1,:]
    @test collect(d_e'*v) ≈ v∂x[5,:]
    @test collect(d_s'*v) ≈ v∂y[:,1]
    @test collect(d_n'*v) ≈ v∂y[:,6]


    d_x_l = zeros(Float64, 5)
    d_x_u = zeros(Float64, 5)
    for i ∈ eachindex(d_x_l)
        d_x_l[i] = op.dClosure[i-1]
        d_x_u[i] = -op.dClosure[length(d_x_u)-i]
    end

    d_y_l = zeros(Float64, 6)
    d_y_u = zeros(Float64, 6)
    for i ∈ eachindex(d_y_l)
        d_y_l[i] = op.dClosure[i-1]
        d_y_u[i] = -op.dClosure[length(d_y_u)-i]
    end

    function prod_matrix(x,y)
        G = zeros(Float64, length(x), length(y))
        for I ∈ CartesianIndices(G)
            G[I] = x[I[1]]*y[I[2]]
        end

        return G
    end

    g_x = [1,2,3,4.0,5]
    g_y = [5,4,3,2,1.0,11]

    G_w = prod_matrix(d_x_l, g_y)
    G_e = prod_matrix(d_x_u, g_y)
    G_s = prod_matrix(g_x, d_y_l)
    G_n = prod_matrix(g_x, d_y_u)


    @test size(d_w*g_y) == (UnknownDim,6)
    @test size(d_e*g_y) == (UnknownDim,6)
    @test size(d_s*g_x) == (5,UnknownDim)
    @test size(d_n*g_x) == (5,UnknownDim)

    # These tests should be moved to where they are possible (i.e we know what the grid should be)
    @test_broken collect(d_w*g_y) ≈ G_w
    @test_broken collect(d_e*g_y) ≈ G_e
    @test_broken collect(d_s*g_x) ≈ G_s
    @test_broken collect(d_n*g_x) ≈ G_n
end

@testset "BoundaryQuadrature" begin
    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
    g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0))

    H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}())
    H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}())
    H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}())
    H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}())

    v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)

    function get_quadrature(N)
        qc = op.quadratureClosure
        q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...)
        @assert length(q) == N
        return q
    end

    v_w = v[1,:]
    v_e = v[10,:]
    v_s = v[:,1]
    v_n = v[:,11]

    q_x = spacing(g)[1].*get_quadrature(10)
    q_y = spacing(g)[2].*get_quadrature(11)

    @test H_w isa TensorOperator{T,1} where T

    @test domain_size(H_w, (3,)) == (3,)
    @test domain_size(H_n, (3,)) == (3,)

    @test range_size(H_w, (3,)) == (3,)
    @test range_size(H_n, (3,)) == (3,)

    @test size(H_w*v_w) == (11,)
    @test size(H_e*v_e) == (11,)
    @test size(H_s*v_s) == (10,)
    @test size(H_n*v_n) == (10,)

    @test collect(H_w*v_w) ≈ q_y.*v_w
    @test collect(H_e*v_e) ≈ q_y.*v_e
    @test collect(H_s*v_s) ≈ q_x.*v_s
    @test collect(H_n*v_n) ≈ q_x.*v_n

    @test collect(H_w'*v_w) == collect(H_w'*v_w)
    @test collect(H_e'*v_e) == collect(H_e'*v_e)
    @test collect(H_s'*v_s) == collect(H_s'*v_s)
    @test collect(H_n'*v_n) == collect(H_n'*v_n)
end

end