Mercurial > repos > public > sbplib_julia
view test/testDiffOps.jl @ 338:2b0c9b30ea3b refactor/combine_to_one_package
Add test sets for each submodule to make the test output nicer
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 25 Sep 2020 13:48:23 +0200 |
parents | f4e3e71a4ff4 |
children | ffddaf053085 |
line wrap: on
line source
using Test using Sbplib.DiffOps using Sbplib.Grids using Sbplib.SbpOperators using Sbplib.RegionIndices using Sbplib.LazyTensors @testset "DiffOps" begin @testset "Laplace2D" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") Lx = 3.5 Ly = 7.2 g = EquidistantGrid((42,41), (0.0, 0.0), (Lx,Ly)) L = Laplace(g, 1., op) H = quadrature(L) f0(x::Float64,y::Float64) = 2. f1(x::Float64,y::Float64) = x+y f2(x::Float64,y::Float64) = 1/2*x^2 + 1/2*y^2 f3(x::Float64,y::Float64) = 1/6*x^3 + 1/6*y^3 f4(x::Float64,y::Float64) = 1/24*x^4 + 1/24*y^4 f5(x::Float64,y::Float64) = sin(x) + cos(y) f5ₓₓ(x::Float64,y::Float64) = -f5(x,y) v0 = evalOn(g,f0) v1 = evalOn(g,f1) v2 = evalOn(g,f2) v3 = evalOn(g,f3) v4 = evalOn(g,f4) v5 = evalOn(g,f5) v5ₓₓ = evalOn(g,f5ₓₓ) @test L isa TensorOperator{T,2} where T @test L' isa TensorMapping{T,2,2} where T # TODO: Should perhaps set tolerance level for isapporx instead? # Are these tolerance levels resonable or should tests be constructed # differently? equalitytol = 0.5*1e-10 accuracytol = 0.5*1e-3 # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for v - monomial up to order 3. # Exact differentiation is measured point-wise. For other grid functions # the error is measured in the H-norm. @test all(abs.(collect(L*v0)) .<= equalitytol) @test all(abs.(collect(L*v1)) .<= equalitytol) @test all(collect(L*v2) .≈ v0) # Seems to be more accurate @test all(abs.((collect(L*v3) - v1)) .<= equalitytol) e4 = collect(L*v4) - v2 e5 = collect(L*v5) - v5ₓₓ @test sum(collect(H*e4.^2)) <= accuracytol @test sum(collect(H*e5.^2)) <= accuracytol end @testset "Quadrature" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") Lx = 2.3 Ly = 5.2 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) H = Quadrature(op,g) v = ones(Float64, size(g)) @test H isa TensorOperator{T,2} where T @test H' isa TensorMapping{T,2,2} where T @test sum(collect(H*v)) ≈ (Lx*Ly) @test collect(H*v) == collect(H'*v) end @testset "InverseQuadrature" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") Lx = 7.3 Ly = 8.2 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) H = Quadrature(op,g) Hinv = InverseQuadrature(op,g) v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) @test Hinv isa TensorOperator{T,2} where T @test Hinv' isa TensorMapping{T,2,2} where T @test collect(Hinv*H*v) ≈ v @test collect(Hinv*v) == collect(Hinv'*v) end @testset "BoundaryValue" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) v = zeros(Float64, 4, 5) v[:,5] = [1, 2, 3,4] v[:,4] = [1, 2, 3,4] v[:,3] = [4, 5, 6, 7] v[:,2] = [7, 8, 9, 10] v[:,1] = [10, 11, 12, 13] @test e_w isa TensorMapping{T,2,1} where T @test e_w' isa TensorMapping{T,1,2} where T @test domain_size(e_w, (3,2)) == (2,) @test domain_size(e_e, (3,2)) == (2,) @test domain_size(e_s, (3,2)) == (3,) @test domain_size(e_n, (3,2)) == (3,) @test size(e_w'*v) == (5,) @test size(e_e'*v) == (5,) @test size(e_s'*v) == (4,) @test size(e_n'*v) == (4,) @test collect(e_w'*v) == [10,7,4,1.0,1] @test collect(e_e'*v) == [13,10,7,4,4.0] @test collect(e_s'*v) == [10,11,12,13.0] @test collect(e_n'*v) == [1,2,3,4.0] g_x = [1,2,3,4.0] g_y = [5,4,3,2,1.0] G_w = zeros(Float64, (4,5)) G_w[1,:] = g_y G_e = zeros(Float64, (4,5)) G_e[4,:] = g_y G_s = zeros(Float64, (4,5)) G_s[:,1] = g_x G_n = zeros(Float64, (4,5)) G_n[:,5] = g_x @test size(e_w*g_y) == (UnknownDim,5) @test size(e_e*g_y) == (UnknownDim,5) @test size(e_s*g_x) == (4,UnknownDim) @test size(e_n*g_x) == (4,UnknownDim) # These tests should be moved to where they are possible (i.e we know what the grid should be) @test_broken collect(e_w*g_y) == G_w @test_broken collect(e_e*g_y) == G_e @test_broken collect(e_s*g_x) == G_s @test_broken collect(e_n*g_x) == G_n end @testset "NormalDerivative" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) v∂x = evalOn(g, (x,y)-> 2*x + y) v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) @test d_w isa TensorMapping{T,2,1} where T @test d_w' isa TensorMapping{T,1,2} where T @test domain_size(d_w, (3,2)) == (2,) @test domain_size(d_e, (3,2)) == (2,) @test domain_size(d_s, (3,2)) == (3,) @test domain_size(d_n, (3,2)) == (3,) @test size(d_w'*v) == (6,) @test size(d_e'*v) == (6,) @test size(d_s'*v) == (5,) @test size(d_n'*v) == (5,) @test collect(d_w'*v) ≈ v∂x[1,:] @test collect(d_e'*v) ≈ v∂x[5,:] @test collect(d_s'*v) ≈ v∂y[:,1] @test collect(d_n'*v) ≈ v∂y[:,6] d_x_l = zeros(Float64, 5) d_x_u = zeros(Float64, 5) for i ∈ eachindex(d_x_l) d_x_l[i] = op.dClosure[i-1] d_x_u[i] = -op.dClosure[length(d_x_u)-i] end d_y_l = zeros(Float64, 6) d_y_u = zeros(Float64, 6) for i ∈ eachindex(d_y_l) d_y_l[i] = op.dClosure[i-1] d_y_u[i] = -op.dClosure[length(d_y_u)-i] end function prod_matrix(x,y) G = zeros(Float64, length(x), length(y)) for I ∈ CartesianIndices(G) G[I] = x[I[1]]*y[I[2]] end return G end g_x = [1,2,3,4.0,5] g_y = [5,4,3,2,1.0,11] G_w = prod_matrix(d_x_l, g_y) G_e = prod_matrix(d_x_u, g_y) G_s = prod_matrix(g_x, d_y_l) G_n = prod_matrix(g_x, d_y_u) @test size(d_w*g_y) == (UnknownDim,6) @test size(d_e*g_y) == (UnknownDim,6) @test size(d_s*g_x) == (5,UnknownDim) @test size(d_n*g_x) == (5,UnknownDim) # These tests should be moved to where they are possible (i.e we know what the grid should be) @test_broken collect(d_w*g_y) ≈ G_w @test_broken collect(d_e*g_y) ≈ G_e @test_broken collect(d_s*g_x) ≈ G_s @test_broken collect(d_n*g_x) ≈ G_n end @testset "BoundaryQuadrature" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) function get_quadrature(N) qc = op.quadratureClosure q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) @assert length(q) == N return q end v_w = v[1,:] v_e = v[10,:] v_s = v[:,1] v_n = v[:,11] q_x = spacing(g)[1].*get_quadrature(10) q_y = spacing(g)[2].*get_quadrature(11) @test H_w isa TensorOperator{T,1} where T @test domain_size(H_w, (3,)) == (3,) @test domain_size(H_n, (3,)) == (3,) @test range_size(H_w, (3,)) == (3,) @test range_size(H_n, (3,)) == (3,) @test size(H_w*v_w) == (11,) @test size(H_e*v_e) == (11,) @test size(H_s*v_s) == (10,) @test size(H_n*v_n) == (10,) @test collect(H_w*v_w) ≈ q_y.*v_w @test collect(H_e*v_e) ≈ q_y.*v_e @test collect(H_s*v_s) ≈ q_x.*v_s @test collect(H_n*v_n) ≈ q_x.*v_n @test collect(H_w'*v_w) == collect(H_w'*v_w) @test collect(H_e'*v_e) == collect(H_e'*v_e) @test collect(H_s'*v_s) == collect(H_s'*v_s) @test collect(H_n'*v_n) == collect(H_n'*v_n) end end