Mercurial > repos > public > sbplib_julia
diff src/SbpOperators/volumeops/laplace/laplace.jl @ 1207:f1c2a4fa0ee1 performance/get_region_type_inference
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 03 Feb 2023 22:14:47 +0100 |
parents | dfbd62c7eb09 |
children | a8c8517a310f 356ec6a72974 |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Mon Feb 21 10:33:58 2022 +0100 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Fri Feb 03 22:14:47 2023 +0100 @@ -1,7 +1,40 @@ """ - laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) + Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} + +Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a +`LazyTensor`. Additionally `Laplace` stores the `StencilSet` +used to construct the `LazyTensor `. +""" +struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} + D::TM # Difference operator + stencil_set::StencilSet # Stencil set of the operator +end + +""" + Laplace(grid::Equidistant, stencil_set) + +Creates the `Laplace` operator `Δ` on `grid` given a `stencil_set`. -Creates the Laplace operator operator `Δ` as a `TensorMapping` +See also [`laplace`](@ref). +""" +function Laplace(grid::EquidistantGrid, stencil_set::StencilSet) + inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) + closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) + Δ = laplace(grid, inner_stencil,closure_stencils) + return Laplace(Δ,stencil_set) +end + +LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) +LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) +LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) + +# TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. +# Base.show(io::IO, L::Laplace) = ... + +""" + laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) + +Creates the Laplace operator operator `Δ` as a `LazyTensor` `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` @@ -10,12 +43,13 @@ On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s where the sum is carried out lazily. + +See also: [`second_derivative`](@ref). """ function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) Δ = second_derivative(grid, inner_stencil, closure_stencils, 1) - for d = 2:dimension(grid) + for d = 2:ndims(grid) Δ += second_derivative(grid, inner_stencil, closure_stencils, d) end return Δ end -export laplace