Mercurial > repos > public > sbplib_julia
diff src/SbpOperators/boundaryops/boundary_operator.jl @ 1207:f1c2a4fa0ee1 performance/get_region_type_inference
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 03 Feb 2023 22:14:47 +0100 |
parents | b41180efb6c2 716e721ce3eb |
children |
line wrap: on
line diff
--- a/src/SbpOperators/boundaryops/boundary_operator.jl Mon Feb 21 10:33:58 2022 +0100 +++ b/src/SbpOperators/boundaryops/boundary_operator.jl Fri Feb 03 22:14:47 2023 +0100 @@ -1,48 +1,17 @@ """ - boundary_operator(grid,closure_stencil,boundary) - -Creates a boundary operator on a `Dim`-dimensional grid for the -specified `boundary`. The action of the operator is determined by `closure_stencil`. - -When `Dim=1`, the corresponding `BoundaryOperator` tensor mapping is returned. -When `Dim>1`, the `BoundaryOperator` `op` is inflated by the outer product -of `IdentityMappings` in orthogonal coordinate directions, e.g for `Dim=3`, -the boundary restriction operator in the y-direction direction is `Ix⊗op⊗Iz`. -""" -function boundary_operator(grid::EquidistantGrid, closure_stencil, boundary::CartesianBoundary) - #TODO:Check that dim(boundary) <= Dim? + BoundaryOperator{T,R,N} <: LazyTensor{T,0,1} - # Create 1D boundary operator - r = region(boundary) - d = dim(boundary) - op = BoundaryOperator(restrict(grid, d), closure_stencil, r) - - # Create 1D IdentityMappings for each coordinate direction - one_d_grids = restrict.(Ref(grid), Tuple(1:dimension(grid))) - Is = IdentityMapping{eltype(grid)}.(size.(one_d_grids)) - - # Formulate the correct outer product sequence of the identity mappings and - # the boundary operator - parts = Base.setindex(Is, op, d) - return foldl(⊗, parts) -end - -""" - BoundaryOperator{T,R,N} <: TensorMapping{T,0,1} - -Implements the boundary operator `op` for 1D as a `TensorMapping` +Implements the boundary operator `op` for 1D as a `LazyTensor` `op` is the restriction of a grid function to the boundary using some closure `Stencil{T,N}`. The boundary to restrict to is determined by `R`. `op'` is the prolongation of a zero dimensional array to the whole grid using the same closure stencil. """ -struct BoundaryOperator{T,R<:Region,N} <: TensorMapping{T,0,1} +struct BoundaryOperator{T,R<:Region,N} <: LazyTensor{T,0,1} stencil::Stencil{T,N} size::Int end -BoundaryOperator{R}(stencil::Stencil{T,N}, size::Int) where {T,R,N} = BoundaryOperator{T,R,N}(stencil, size) - """ BoundaryOperator(grid::EquidistantGrid{1}, closure_stencil, region) @@ -55,6 +24,7 @@ """ closure_size(::BoundaryOperator) + The size of the closure stencil. """ closure_size(::BoundaryOperator{T,R,N}) where {T,R,N} = N @@ -62,27 +32,27 @@ LazyTensors.range_size(op::BoundaryOperator) = () LazyTensors.domain_size(op::BoundaryOperator) = (op.size,) -function LazyTensors.apply(op::BoundaryOperator{T,Lower}, v::AbstractVector{T}) where T +function LazyTensors.apply(op::BoundaryOperator{<:Any,Lower}, v::AbstractVector) apply_stencil(op.stencil,v,1) end -function LazyTensors.apply(op::BoundaryOperator{T,Upper}, v::AbstractVector{T}) where T +function LazyTensors.apply(op::BoundaryOperator{<:Any,Upper}, v::AbstractVector) apply_stencil_backwards(op.stencil,v,op.size) end -function LazyTensors.apply_transpose(op::BoundaryOperator{T,Lower}, v::AbstractArray{T,0}, i::Index{Lower}) where T +function LazyTensors.apply_transpose(op::BoundaryOperator{<:Any,Lower}, v::AbstractArray{<:Any,0}, i::Index{Lower}) return op.stencil[Int(i)-1]*v[] end -function LazyTensors.apply_transpose(op::BoundaryOperator{T,Upper}, v::AbstractArray{T,0}, i::Index{Upper}) where T +function LazyTensors.apply_transpose(op::BoundaryOperator{<:Any,Upper}, v::AbstractArray{<:Any,0}, i::Index{Upper}) return op.stencil[op.size[1] - Int(i)]*v[] end # Catch all combinations of Lower, Upper and Interior not caught by the two previous methods. -function LazyTensors.apply_transpose(op::BoundaryOperator{T}, v::AbstractArray{T,0}, i::Index) where T - return zero(T) +function LazyTensors.apply_transpose(op::BoundaryOperator, v::AbstractArray{<:Any,0}, i::Index) + return zero(eltype(v)) end -function LazyTensors.apply_transpose(op::BoundaryOperator{T}, v::AbstractArray{T,0}, i) where T +function LazyTensors.apply_transpose(op::BoundaryOperator, v::AbstractArray{<:Any,0}, i) return LazyTensors.apply_transpose_with_region(op, v, closure_size(op), op.size[1], i) end