Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/boundaryops/boundary_operator.jl @ 1207:f1c2a4fa0ee1 performance/get_region_type_inference
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 03 Feb 2023 22:14:47 +0100 |
parents | b41180efb6c2 716e721ce3eb |
children |
comparison
equal
deleted
inserted
replaced
919:b41180efb6c2 | 1207:f1c2a4fa0ee1 |
---|---|
1 """ | 1 """ |
2 boundary_operator(grid,closure_stencil,boundary) | 2 BoundaryOperator{T,R,N} <: LazyTensor{T,0,1} |
3 | 3 |
4 Creates a boundary operator on a `Dim`-dimensional grid for the | 4 Implements the boundary operator `op` for 1D as a `LazyTensor` |
5 specified `boundary`. The action of the operator is determined by `closure_stencil`. | |
6 | |
7 When `Dim=1`, the corresponding `BoundaryOperator` tensor mapping is returned. | |
8 When `Dim>1`, the `BoundaryOperator` `op` is inflated by the outer product | |
9 of `IdentityMappings` in orthogonal coordinate directions, e.g for `Dim=3`, | |
10 the boundary restriction operator in the y-direction direction is `Ix⊗op⊗Iz`. | |
11 """ | |
12 function boundary_operator(grid::EquidistantGrid, closure_stencil, boundary::CartesianBoundary) | |
13 #TODO:Check that dim(boundary) <= Dim? | |
14 | |
15 # Create 1D boundary operator | |
16 r = region(boundary) | |
17 d = dim(boundary) | |
18 op = BoundaryOperator(restrict(grid, d), closure_stencil, r) | |
19 | |
20 # Create 1D IdentityMappings for each coordinate direction | |
21 one_d_grids = restrict.(Ref(grid), Tuple(1:dimension(grid))) | |
22 Is = IdentityMapping{eltype(grid)}.(size.(one_d_grids)) | |
23 | |
24 # Formulate the correct outer product sequence of the identity mappings and | |
25 # the boundary operator | |
26 parts = Base.setindex(Is, op, d) | |
27 return foldl(⊗, parts) | |
28 end | |
29 | |
30 """ | |
31 BoundaryOperator{T,R,N} <: TensorMapping{T,0,1} | |
32 | |
33 Implements the boundary operator `op` for 1D as a `TensorMapping` | |
34 | 5 |
35 `op` is the restriction of a grid function to the boundary using some closure `Stencil{T,N}`. | 6 `op` is the restriction of a grid function to the boundary using some closure `Stencil{T,N}`. |
36 The boundary to restrict to is determined by `R`. | 7 The boundary to restrict to is determined by `R`. |
37 `op'` is the prolongation of a zero dimensional array to the whole grid using the same closure stencil. | 8 `op'` is the prolongation of a zero dimensional array to the whole grid using the same closure stencil. |
38 """ | 9 """ |
39 struct BoundaryOperator{T,R<:Region,N} <: TensorMapping{T,0,1} | 10 struct BoundaryOperator{T,R<:Region,N} <: LazyTensor{T,0,1} |
40 stencil::Stencil{T,N} | 11 stencil::Stencil{T,N} |
41 size::Int | 12 size::Int |
42 end | 13 end |
43 | |
44 BoundaryOperator{R}(stencil::Stencil{T,N}, size::Int) where {T,R,N} = BoundaryOperator{T,R,N}(stencil, size) | |
45 | 14 |
46 """ | 15 """ |
47 BoundaryOperator(grid::EquidistantGrid{1}, closure_stencil, region) | 16 BoundaryOperator(grid::EquidistantGrid{1}, closure_stencil, region) |
48 | 17 |
49 Constructs the BoundaryOperator with stencil `closure_stencil` for a one-dimensional `grid`, restricting to | 18 Constructs the BoundaryOperator with stencil `closure_stencil` for a one-dimensional `grid`, restricting to |
53 return BoundaryOperator{T,typeof(region),N}(closure_stencil,size(grid)[1]) | 22 return BoundaryOperator{T,typeof(region),N}(closure_stencil,size(grid)[1]) |
54 end | 23 end |
55 | 24 |
56 """ | 25 """ |
57 closure_size(::BoundaryOperator) | 26 closure_size(::BoundaryOperator) |
27 | |
58 The size of the closure stencil. | 28 The size of the closure stencil. |
59 """ | 29 """ |
60 closure_size(::BoundaryOperator{T,R,N}) where {T,R,N} = N | 30 closure_size(::BoundaryOperator{T,R,N}) where {T,R,N} = N |
61 | 31 |
62 LazyTensors.range_size(op::BoundaryOperator) = () | 32 LazyTensors.range_size(op::BoundaryOperator) = () |
63 LazyTensors.domain_size(op::BoundaryOperator) = (op.size,) | 33 LazyTensors.domain_size(op::BoundaryOperator) = (op.size,) |
64 | 34 |
65 function LazyTensors.apply(op::BoundaryOperator{T,Lower}, v::AbstractVector{T}) where T | 35 function LazyTensors.apply(op::BoundaryOperator{<:Any,Lower}, v::AbstractVector) |
66 apply_stencil(op.stencil,v,1) | 36 apply_stencil(op.stencil,v,1) |
67 end | 37 end |
68 | 38 |
69 function LazyTensors.apply(op::BoundaryOperator{T,Upper}, v::AbstractVector{T}) where T | 39 function LazyTensors.apply(op::BoundaryOperator{<:Any,Upper}, v::AbstractVector) |
70 apply_stencil_backwards(op.stencil,v,op.size) | 40 apply_stencil_backwards(op.stencil,v,op.size) |
71 end | 41 end |
72 | 42 |
73 function LazyTensors.apply_transpose(op::BoundaryOperator{T,Lower}, v::AbstractArray{T,0}, i::Index{Lower}) where T | 43 function LazyTensors.apply_transpose(op::BoundaryOperator{<:Any,Lower}, v::AbstractArray{<:Any,0}, i::Index{Lower}) |
74 return op.stencil[Int(i)-1]*v[] | 44 return op.stencil[Int(i)-1]*v[] |
75 end | 45 end |
76 | 46 |
77 function LazyTensors.apply_transpose(op::BoundaryOperator{T,Upper}, v::AbstractArray{T,0}, i::Index{Upper}) where T | 47 function LazyTensors.apply_transpose(op::BoundaryOperator{<:Any,Upper}, v::AbstractArray{<:Any,0}, i::Index{Upper}) |
78 return op.stencil[op.size[1] - Int(i)]*v[] | 48 return op.stencil[op.size[1] - Int(i)]*v[] |
79 end | 49 end |
80 | 50 |
81 # Catch all combinations of Lower, Upper and Interior not caught by the two previous methods. | 51 # Catch all combinations of Lower, Upper and Interior not caught by the two previous methods. |
82 function LazyTensors.apply_transpose(op::BoundaryOperator{T}, v::AbstractArray{T,0}, i::Index) where T | 52 function LazyTensors.apply_transpose(op::BoundaryOperator, v::AbstractArray{<:Any,0}, i::Index) |
83 return zero(T) | 53 return zero(eltype(v)) |
84 end | 54 end |
85 | 55 |
86 function LazyTensors.apply_transpose(op::BoundaryOperator{T}, v::AbstractArray{T,0}, i) where T | 56 function LazyTensors.apply_transpose(op::BoundaryOperator, v::AbstractArray{<:Any,0}, i) |
87 return LazyTensors.apply_transpose_with_region(op, v, closure_size(op), op.size[1], i) | 57 return LazyTensors.apply_transpose_with_region(op, v, closure_size(op), op.size[1], i) |
88 end | 58 end |