Mercurial > repos > public > sbplib_julia
diff test/SbpOperators/volumeops/laplace/laplace_test.jl @ 1351:d7f29359b822
Merge refactor/grids
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 19 May 2023 23:53:36 +0200 |
parents | 356ec6a72974 |
children | e96ee7d7ac9c 43aaf710463e |
line wrap: on
line diff
--- a/test/SbpOperators/volumeops/laplace/laplace_test.jl Mon May 01 11:37:09 2023 +0200 +++ b/test/SbpOperators/volumeops/laplace/laplace_test.jl Fri May 19 23:53:36 2023 +0200 @@ -4,40 +4,40 @@ using Sbplib.Grids using Sbplib.LazyTensors -# Default stencils (4th order) -operator_path = sbp_operators_path()*"standard_diagonal.toml" -stencil_set = read_stencil_set(operator_path; order=4) -inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) -closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) -g_1D = EquidistantGrid(101, 0.0, 1.) -g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) +@testset "Laplace" begin + # Default stencils (4th order) + operator_path = sbp_operators_path()*"standard_diagonal.toml" + stencil_set = read_stencil_set(operator_path; order=4) + g_1D = equidistant_grid(101, 0.0, 1.) + g_3D = equidistant_grid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) -@testset "Laplace" begin @testset "Constructors" begin @testset "1D" begin - Δ = laplace(g_1D, inner_stencil, closure_stencils) - @test Laplace(g_1D, stencil_set) == Laplace(Δ, stencil_set) - @test Laplace(g_1D, stencil_set) isa LazyTensor{T,1,1} where T + @test Laplace(g_1D, stencil_set) == Laplace(laplace(g_1D, stencil_set), stencil_set) + @test Laplace(g_1D, stencil_set) isa LazyTensor{Float64,1,1} end @testset "3D" begin - Δ = laplace(g_3D, inner_stencil, closure_stencils) - @test Laplace(g_3D, stencil_set) == Laplace(Δ,stencil_set) - @test Laplace(g_3D, stencil_set) isa LazyTensor{T,3,3} where T + @test Laplace(g_3D, stencil_set) == Laplace(laplace(g_3D, stencil_set),stencil_set) + @test Laplace(g_3D, stencil_set) isa LazyTensor{Float64,3,3} end end # Exact differentiation is measured point-wise. In other cases # the error is measured in the l2-norm. @testset "Accuracy" begin - l2(v) = sqrt(prod(spacing(g_3D))*sum(v.^2)); + l2(v) = sqrt(prod(spacing.(g_3D.grids))*sum(v.^2)); polynomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i) - polynomials = (polynomials...,evalOn(g_3D,f_i)) + polynomials = (polynomials...,eval_on(g_3D,f_i)) end - v = evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) - Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) + # v = eval_on(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) + # Δv = eval_on(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) + + v = eval_on(g_3D, x̄ -> sin(x̄[1]) + cos(x̄[2]) + exp(x̄[3])) + Δv = eval_on(g_3D, x̄ -> -sin(x̄[1]) - cos(x̄[2]) + exp(x̄[3])) + @inferred v[1,2,3] # 2nd order interior stencil, 1st order boundary stencil, # implies that L*v should be exact for binomials up to order 2. @@ -67,19 +67,24 @@ end @testset "laplace" begin + operator_path = sbp_operators_path()*"standard_diagonal.toml" + stencil_set = read_stencil_set(operator_path; order=4) + g_1D = equidistant_grid(101, 0.0, 1.) + g_3D = equidistant_grid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) + @testset "1D" begin - Δ = laplace(g_1D, inner_stencil, closure_stencils) - @test Δ == second_derivative(g_1D, inner_stencil, closure_stencils, 1) - @test Δ isa LazyTensor{T,1,1} where T + Δ = laplace(g_1D, stencil_set) + @test Δ == second_derivative(g_1D, stencil_set) + @test Δ isa LazyTensor{Float64,1,1} end @testset "3D" begin - Δ = laplace(g_3D, inner_stencil, closure_stencils) - @test Δ isa LazyTensor{T,3,3} where T - Dxx = second_derivative(g_3D, inner_stencil, closure_stencils, 1) - Dyy = second_derivative(g_3D, inner_stencil, closure_stencils, 2) - Dzz = second_derivative(g_3D, inner_stencil, closure_stencils, 3) + Δ = laplace(g_3D, stencil_set) + @test Δ isa LazyTensor{Float64,3,3} + Dxx = second_derivative(g_3D, stencil_set, 1) + Dyy = second_derivative(g_3D, stencil_set, 2) + Dzz = second_derivative(g_3D, stencil_set, 3) @test Δ == Dxx + Dyy + Dzz - @test Δ isa LazyTensor{T,3,3} where T + @test Δ isa LazyTensor{Float64,3,3} end end