Mercurial > repos > public > sbplib_julia
view test/SbpOperators/volumeops/laplace/laplace_test.jl @ 1529:43aaf710463e refactor/equidistant_grid/signature
Change to signature of equidistant_grid to same style as many array methods.
See for example Array{T}(undef, dims...), zeros(T, dims...), fill(a, dims...) and more.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 11 Apr 2024 22:31:04 +0200 |
parents | 356ec6a72974 |
children | 43e6acbefdd1 d68d02dd882f |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids using Sbplib.LazyTensors @testset "Laplace" begin # Default stencils (4th order) operator_path = sbp_operators_path()*"standard_diagonal.toml" stencil_set = read_stencil_set(operator_path; order=4) g_1D = equidistant_grid(0.0, 1., 101) g_3D = equidistant_grid((0.0, -1.0, 0.0), (1., 1., 1.), 51, 101, 52) @testset "Constructors" begin @testset "1D" begin @test Laplace(g_1D, stencil_set) == Laplace(laplace(g_1D, stencil_set), stencil_set) @test Laplace(g_1D, stencil_set) isa LazyTensor{Float64,1,1} end @testset "3D" begin @test Laplace(g_3D, stencil_set) == Laplace(laplace(g_3D, stencil_set),stencil_set) @test Laplace(g_3D, stencil_set) isa LazyTensor{Float64,3,3} end end # Exact differentiation is measured point-wise. In other cases # the error is measured in the l2-norm. @testset "Accuracy" begin l2(v) = sqrt(prod(spacing.(g_3D.grids))*sum(v.^2)); polynomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i) polynomials = (polynomials...,eval_on(g_3D,f_i)) end # v = eval_on(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) # Δv = eval_on(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) v = eval_on(g_3D, x̄ -> sin(x̄[1]) + cos(x̄[2]) + exp(x̄[3])) Δv = eval_on(g_3D, x̄ -> -sin(x̄[1]) - cos(x̄[2]) + exp(x̄[3])) @inferred v[1,2,3] # 2nd order interior stencil, 1st order boundary stencil, # implies that L*v should be exact for binomials up to order 2. @testset "2nd order" begin stencil_set = read_stencil_set(operator_path; order=2) Δ = Laplace(g_3D, stencil_set) @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9 @test Δ*v ≈ Δv rtol = 5e-2 norm = l2 end # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for binomials up to order 3. @testset "4th order" begin stencil_set = read_stencil_set(operator_path; order=4) Δ = Laplace(g_3D, stencil_set) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9 @test Δ*polynomials[4] ≈ polynomials[2] atol = 5e-9 @test Δ*v ≈ Δv rtol = 5e-4 norm = l2 end end end @testset "laplace" begin operator_path = sbp_operators_path()*"standard_diagonal.toml" stencil_set = read_stencil_set(operator_path; order=4) g_1D = equidistant_grid(0.0, 1., 101) g_3D = equidistant_grid((0.0, -1.0, 0.0), (1., 1., 1.), 51, 101, 52) @testset "1D" begin Δ = laplace(g_1D, stencil_set) @test Δ == second_derivative(g_1D, stencil_set) @test Δ isa LazyTensor{Float64,1,1} end @testset "3D" begin Δ = laplace(g_3D, stencil_set) @test Δ isa LazyTensor{Float64,3,3} Dxx = second_derivative(g_3D, stencil_set, 1) Dyy = second_derivative(g_3D, stencil_set, 2) Dzz = second_derivative(g_3D, stencil_set, 3) @test Δ == Dxx + Dyy + Dzz @test Δ isa LazyTensor{Float64,3,3} end end