diff src/SbpOperators/volumeops/derivatives/second_derivative_variable.jl @ 881:aa4875f9a530 feature/variable_derivatives

Start implementing the variable second derivative
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 20 Jan 2022 15:18:14 +0100
parents
children 9098fc936776
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/volumeops/derivatives/second_derivative_variable.jl	Thu Jan 20 15:18:14 2022 +0100
@@ -0,0 +1,62 @@
+export SecondDerivativeVariable
+
+# """
+#     SecondDerivativeVariable(grid, inner_stencil, closure_stencils, parity, direction)
+
+# Creates a volume operator on a `Dim`-dimensional grid acting along the
+# specified coordinate `direction`. The action of the operator is determined by
+# the stencils `inner_stencil` and `closure_stencils`. When `Dim=1`, the
+# corresponding `SecondDerivativeVariable` tensor mapping is returned. When `Dim>1`, the
+# returned operator is the appropriate outer product of a one-dimensional
+# operators and `IdentityMapping`s, e.g for `Dim=3` the volume operator in the
+# y-direction is `I⊗op⊗I`.
+# """
+# function volume_operator(grid::EquidistantGrid, inner_stencil, closure_stencils, parity, direction)
+#     #TODO: Check that direction <= Dim?
+
+#     # Create 1D volume operator in along coordinate direction
+#     op = SecondDerivativeVariable(restrict(grid, direction), inner_stencil, closure_stencils, parity)
+#     # Create 1D IdentityMappings for each coordinate direction
+#     one_d_grids = restrict.(Ref(grid), Tuple(1:dimension(grid)))
+#     Is = IdentityMapping{eltype(grid)}.(size.(one_d_grids))
+#     # Formulate the correct outer product sequence of the identity mappings and
+#     # the volume operator
+#     parts = Base.setindex(Is, op, direction)
+#     return foldl(⊗, parts)
+# end
+
+"""
+    SecondDerivativeVariable{T,N,M,K} <: TensorOperator{T,1}
+Implements a one-dimensional constant coefficients volume operator
+"""
+struct SecondDerivativeVariable{T,N,M,K} <: TensorMapping{T,1,1}
+    inner_stencil::NestedStencil{T,N}
+    closure_stencils::NTuple{M,NestedStencil{T,K}}
+    size::NTuple{1,Int}
+end
+
+function SecondDerivativeVariable(grid::EquidistantGrid{1}, inner_stencil, closure_stencils)
+    return SecondDerivativeVariable(inner_stencil, Tuple(closure_stencils), size(grid))
+end
+
+closure_size(::SecondDerivativeVariable{T,N,M}) where {T,N,M} = M
+
+LazyTensors.range_size(op::SecondDerivativeVariable) = op.size
+LazyTensors.domain_size(op::SecondDerivativeVariable) = op.size
+
+function LazyTensors.apply(op::SecondDerivativeVariable{T}, v::AbstractVector{T}, i::Index{Lower}) where T
+    return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i))
+end
+
+function LazyTensors.apply(op::SecondDerivativeVariable{T}, v::AbstractVector{T}, i::Index{Interior}) where T
+    return apply_stencil(op.inner_stencil, v, Int(i))
+end
+
+function LazyTensors.apply(op::SecondDerivativeVariable{T}, v::AbstractVector{T}, i::Index{Upper}) where T
+    return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size[1]-Int(i)+1], v, Int(i))
+end
+
+function LazyTensors.apply(op::SecondDerivativeVariable{T}, v::AbstractVector{T}, i) where T
+    r = getregion(i, closure_size(op), op.size[1])
+    return LazyTensors.apply(op, v, Index(i, r))
+end