Mercurial > repos > public > sbplib_julia
view src/SbpOperators/volumeops/derivatives/second_derivative_variable.jl @ 882:9098fc936776 feature/variable_derivatives
Add the coefficient as a part of the struct. Wrap tests in testsets
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 21 Jan 2022 09:20:58 +0100 |
parents | aa4875f9a530 |
children | d228d1b26729 |
line wrap: on
line source
export SecondDerivativeVariable # """ # SecondDerivativeVariable(grid, inner_stencil, closure_stencils, parity, direction) # Creates a volume operator on a `Dim`-dimensional grid acting along the # specified coordinate `direction`. The action of the operator is determined by # the stencils `inner_stencil` and `closure_stencils`. When `Dim=1`, the # corresponding `SecondDerivativeVariable` tensor mapping is returned. When `Dim>1`, the # returned operator is the appropriate outer product of a one-dimensional # operators and `IdentityMapping`s, e.g for `Dim=3` the volume operator in the # y-direction is `I⊗op⊗I`. # """ # function volume_operator(grid::EquidistantGrid, inner_stencil, closure_stencils, parity, direction) # #TODO: Check that direction <= Dim? # # Create 1D volume operator in along coordinate direction # op = SecondDerivativeVariable(restrict(grid, direction), inner_stencil, closure_stencils, parity) # # Create 1D IdentityMappings for each coordinate direction # one_d_grids = restrict.(Ref(grid), Tuple(1:dimension(grid))) # Is = IdentityMapping{eltype(grid)}.(size.(one_d_grids)) # # Formulate the correct outer product sequence of the identity mappings and # # the volume operator # parts = Base.setindex(Is, op, direction) # return foldl(⊗, parts) # end """ SecondDerivativeVariable{T,N,M,K} <: TensorOperator{T,1} Implements the one-dimensional second derivative with variable coefficients. """ struct SecondDerivativeVariable{T,N,M,K,TArray<:AbstractVector} <: TensorMapping{T,1,1} inner_stencil::NestedStencil{T,N} closure_stencils::NTuple{M,NestedStencil{T,K}} size::NTuple{1,Int} coefficient::TArray end function SecondDerivativeVariable(grid::EquidistantGrid{1}, coeff::AbstractVector, inner_stencil, closure_stencils) return SecondDerivativeVariable(inner_stencil, Tuple(closure_stencils), size(grid), coeff) end closure_size(::SecondDerivativeVariable{T,N,M}) where {T,N,M} = M LazyTensors.range_size(op::SecondDerivativeVariable) = op.size LazyTensors.domain_size(op::SecondDerivativeVariable) = op.size function LazyTensors.apply(op::SecondDerivativeVariable{T}, v::AbstractVector{T}, i::Index{Lower}) where T return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i)) end function LazyTensors.apply(op::SecondDerivativeVariable{T}, v::AbstractVector{T}, i::Index{Interior}) where T return apply_stencil(op.inner_stencil, v, Int(i)) end function LazyTensors.apply(op::SecondDerivativeVariable{T}, v::AbstractVector{T}, i::Index{Upper}) where T return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size[1]-Int(i)+1], v, Int(i)) end function LazyTensors.apply(op::SecondDerivativeVariable{T}, v::AbstractVector{T}, i) where T r = getregion(i, closure_size(op), op.size[1]) return LazyTensors.apply(op, v, Index(i, r)) end