diff src/SbpOperators/volumeops/quadratures/diagonal_quadrature.jl @ 636:a1dfaf305f41 feature/volume_and_boundary_operators

Move SbpOpertors/quadrature to SbpOperators/volumeops/
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 01 Jan 2021 16:45:48 +0100
parents src/SbpOperators/quadrature/diagonal_quadrature.jl@04d7b4eb63ef
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/volumeops/quadratures/diagonal_quadrature.jl	Fri Jan 01 16:45:48 2021 +0100
@@ -0,0 +1,92 @@
+"""
+diagonal_quadrature(g,quadrature_closure)
+
+Constructs the diagonal quadrature operator `H` on a grid of `Dim` dimensions as
+a `TensorMapping`. The one-dimensional operator is a `DiagonalQuadrature`, while
+the multi-dimensional operator is the outer-product of the
+one-dimensional operators in each coordinate direction.
+"""
+function diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim
+    H = DiagonalQuadrature(restrict(g,1), quadrature_closure)
+    for i ∈ 2:Dim
+        H = H⊗DiagonalQuadrature(restrict(g,i), quadrature_closure)
+    end
+    return H
+end
+export diagonal_quadrature
+
+"""
+    DiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
+
+Implements the one-dimensional diagonal quadrature operator as a `TensorMapping`
+The quadrature is defined by the quadrature interval length `h`, the quadrature
+closure weights `closure` and the number of quadrature intervals `size`. The
+interior stencil has the weight 1.
+"""
+struct DiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
+    h::T
+    closure::NTuple{M,T}
+    size::Tuple{Int}
+end
+export DiagonalQuadrature
+
+"""
+    DiagonalQuadrature(g, quadrature_closure)
+
+Constructs the `DiagonalQuadrature` on the `EquidistantGrid` `g` with
+closure given by `quadrature_closure`.
+"""
+function DiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure)
+    return DiagonalQuadrature(spacing(g)[1], quadrature_closure, size(g))
+end
+
+"""
+    range_size(H::DiagonalQuadrature)
+
+The size of an object in the range of `H`
+"""
+LazyTensors.range_size(H::DiagonalQuadrature) = H.size
+
+"""
+    domain_size(H::DiagonalQuadrature)
+
+The size of an object in the domain of `H`
+"""
+LazyTensors.domain_size(H::DiagonalQuadrature) = H.size
+
+"""
+    apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T
+Implements the application `(H*v)[i]` an `Index{R}` where `R` is one of the regions
+`Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first
+be converted to an `Index{R}`.
+"""
+function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T
+    return @inbounds H.h*H.closure[Int(i)]*v[Int(i)]
+end
+
+function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, i::Index{Upper}) where T
+    N = length(v); #TODO: Use dim_size here?
+    return @inbounds H.h*H.closure[N-Int(i)+1]*v[Int(i)]
+end
+
+function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T
+    return @inbounds H.h*v[Int(i)]
+end
+
+function LazyTensors.apply(H::DiagonalQuadrature{T},  v::AbstractVector{T}, i) where T
+    N = length(v); #TODO: Use dim_size here?
+    r = getregion(i, closure_size(H), N)
+    return LazyTensors.apply(H, v, Index(i, r))
+end
+
+"""
+    apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T
+Implements the application (H'*v)[I]. The operator is self-adjoint.
+"""
+LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(H,v,i)
+
+"""
+    closure_size(H)
+Returns the size of the closure stencil of a DiagonalQuadrature `H`.
+"""
+closure_size(H::DiagonalQuadrature{T,M}) where {T,M} = M