Mercurial > repos > public > sbplib_julia
diff src/SbpOperators/volumeops/laplace/laplace.jl @ 873:9929c99754fb laplace_benchmarks
Add some benchmarks using the Laplace Operator Set
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 19 Jan 2022 13:15:45 +0100 |
parents | 1970ebceabe4 |
children | 067a322e4f73 |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Fri Jul 02 14:23:33 2021 +0200 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Wed Jan 19 13:15:45 2022 +0100 @@ -22,6 +22,7 @@ e::StaticDict{<:BoundaryIdentifier,<:TensorMapping} # Boundary restriction operators. d::StaticDict{<:BoundaryIdentifier,<:TensorMapping} # Normal derivative operators H_boundary::StaticDict{<:BoundaryIdentifier,<:TensorMapping} # Boundary quadrature operators # TODO: Boundary inner product? + order::Int end export Laplace @@ -48,7 +49,7 @@ d_pairs = ntuple(i -> ids[i] => normal_derivative(grid,d_closure_stencil,ids[i]),n_ids) Hᵧ_pairs = ntuple(i -> ids[i] => inner_product(boundary_grid(grid,ids[i]),H_closure_stencils),n_ids) - return Laplace(Δ, H, H⁻¹, StaticDict(e_pairs), StaticDict(d_pairs), StaticDict(Hᵧ_pairs)) + return Laplace(Δ, H, H⁻¹, StaticDict(e_pairs), StaticDict(d_pairs), StaticDict(Hᵧ_pairs), order) end # TODO: Consider pretty printing of the following form @@ -58,6 +59,14 @@ LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) +""" + closure_size(L::Lapalace) + +Returns the inner product operator associated with `L` + +""" +closure_size(L::Laplace) = closure_size(L.D) +export closure_size """ inner_product(L::Lapalace) @@ -124,6 +133,54 @@ boundary_quadrature(L::Laplace,ids::Vararg{BoundaryIdentifier,N}) where N = ntuple(i->L.H_boundary[ids[i]],N) export boundary_quadrature +abstract type BoundaryConditionType end +struct NeumannBC <: BoundaryConditionType end +struct DirichletBC <: BoundaryConditionType end +export NeumannBC + +boundary_condition(L, id, ::NeumannBC) = neumann_bc(L, id) +boundary_condition(L, id, ::DirichletBC) = dirichlet_bc(L, id) +export boundary_condition + +function neumann_bc(L::Laplace, id::BoundaryIdentifier) + H_inv = inverse_inner_product(L) + e = boundary_restriction(L,id) + d = normal_derivative(L,id) + H_b = boundary_quadrature(L,id) + tau = H_inv∘e'∘H_b + closure = tau∘d + # TODO: Return penalty once we have implemented scalar scaling of the operators. + return closure +end + +function dirichlet_bc(L::Laplace, id::BoundaryIdentifier) + error("Not implemented") + # H_inv = inverse_inner_product(L) + # e = boundary_restriction(L,id) + # d = normal_derivative(L,id) + # H_b = boundary_quadrature(L,id) + # gamma = borrowing_parameter(L) + # tuning = 1.2 + # S = ScalingOperator(tuning * -1.0/gamma) + # tau = H_inv∘(S∘e' + d')∘H_b + # closure = tau∘e + # penalty = ScalingOperator(-1)∘tau + # return (closure, penalty) +end + +# function borrowing_parameter(L) +# if L.order == 2 +# return 0.4 +# elseif L.order == 4 +# return 0.2508 +# elseif L.order == 6 +# return 0.1878 +# elseif L.order == 8 +# return 0.0015 +# elseif L.order == 10 +# return 0.0351 +# end +# end """ laplace(grid, inner_stencil, closure_stencils)