Mercurial > repos > public > sbplib_julia
diff src/SbpOperators/volumeops/laplace/laplace.jl @ 1651:707fc9761c2b feature/sbp_operators/laplace_curvilinear
Merge feature/grids/manifolds
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 26 Jun 2024 12:47:26 +0200 |
parents | 4f6f5e5daa35 1937be9502a7 |
children | 29b96fc75bee |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Wed Jun 26 12:36:41 2024 +0200 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Wed Jun 26 12:47:26 2024 +0200 @@ -51,9 +51,9 @@ end return Δ end + laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) - function laplace(grid::MappedGrid, stencil_set) J = jacobian_determinant(grid) J⁻¹ = DiagonalTensor(map(inv, J)) @@ -74,3 +74,79 @@ end end end + + +""" + sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning, R_tuning) + +The operators required to construct the SAT for imposing a Dirichlet +condition. `H_tuning` and `R_tuning` are used to specify the strength of the +penalty. + +See also: [`sat`](@ref),[`DirichletCondition`](@ref), [`positivity_decomposition`](@ref). +""" +function sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning = 1., R_tuning = 1.) + id = boundary(bc) + set = Δ.stencil_set + H⁻¹ = inverse_inner_product(g,set) + Hᵧ = inner_product(boundary_grid(g, id), set) + e = boundary_restriction(g, set, id) + d = normal_derivative(g, set, id) + B = positivity_decomposition(Δ, g, bc; H_tuning, R_tuning) + penalty_tensor = H⁻¹∘(d' - B*e')∘Hᵧ + return penalty_tensor, e +end + +""" + sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) + +The operators required to construct the SAT for imposing a Neumann condition. + +See also: [`sat`](@ref), [`NeumannCondition`](@ref). +""" +function sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) + id = boundary(bc) + set = Δ.stencil_set + H⁻¹ = inverse_inner_product(g,set) + Hᵧ = inner_product(boundary_grid(g, id), set) + e = boundary_restriction(g, set, id) + d = normal_derivative(g, set, id) + + penalty_tensor = -H⁻¹∘e'∘Hᵧ + return penalty_tensor, d +end + +""" + positivity_decomposition(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning, R_tuning) + +Constructs the scalar `B` such that `d' - 1/2*B*e'` is symmetric positive +definite with respect to the boundary quadrature. Here `d` is the normal +derivative and `e` is the boundary restriction operator. `B` can then be used +to form a symmetric and energy stable penalty for a Dirichlet condition. The +parameters `H_tuning` and `R_tuning` are used to specify the strength of the +penalty and must be greater than 1. For details we refer to +https://doi.org/10.1016/j.jcp.2020.109294 +""" +function positivity_decomposition(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning, R_tuning) + @assert(H_tuning ≥ 1.) + @assert(R_tuning ≥ 1.) + Nτ_H, τ_R = positivity_limits(Δ,g,bc) + return H_tuning*Nτ_H + R_tuning*τ_R +end + +# TODO: We should consider implementing a proper BoundaryIdentifier for EquidistantGrid and then +# change bc::BoundaryCondition to id::BoundaryIdentifier +function positivity_limits(Δ::Laplace, g::EquidistantGrid, bc::DirichletCondition) + h = spacing(g) + θ_H = parse_scalar(Δ.stencil_set["H"]["closure"][1]) + θ_R = parse_scalar(Δ.stencil_set["D2"]["positivity"]["theta_R"]) + + τ_H = 1/(h*θ_H) + τ_R = 1/(h*θ_R) + return τ_H, τ_R +end + +function positivity_limits(Δ::Laplace, g::TensorGrid, bc::DirichletCondition) + τ_H, τ_R = positivity_limits(Δ, g.grids[grid_id(boundary(bc))], bc) + return τ_H*ndims(g), τ_R +end