diff SbpOperators/src/laplace/laplace.jl @ 302:6fa2ba769ae3

Create 1D tensor mapping for inverse diagonal norm, and make the multi-dimensional inverse quadrature use those. Move InverseQudrature from laplace.jl into InverseQuadrature.jl
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Tue, 23 Jun 2020 18:56:59 +0200
parents b00eea62c78e
children c1fcc35e19cb
line wrap: on
line diff
--- a/SbpOperators/src/laplace/laplace.jl	Tue Jun 23 18:53:20 2020 +0200
+++ b/SbpOperators/src/laplace/laplace.jl	Tue Jun 23 18:56:59 2020 +0200
@@ -45,31 +45,6 @@
 boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId)
 export quadrature
 
-
-"""
-    InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
-
-Implements the inverse quadrature operator `inv(H)` of Dim dimension as a TensorMapping
-"""
-struct InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim}
-    op::D2{T,N,M,K}
-    grid::EquidistantGrid{Dim,T}
-end
-export InverseQuadrature
-
-LazyTensors.domain_size(H_inv::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size
-
-@inline function LazyTensors.apply(H_inv::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T
-    N = size(H_inv.grid)
-    # Inverse quadrature in x direction
-    @inbounds q_inv = apply_inverse_quadrature(H_inv.op, inverse_spacing(H_inv.grid)[1], v[I] , I[1], N[1])
-    # Inverse quadrature in y-direction
-    @inbounds q_inv = apply_inverse_quadrature(H_inv.op, inverse_spacing(H_inv.grid)[2], q_inv, I[2], N[2])
-    return q_inv
-end
-
-LazyTensors.apply_transpose(H_inv::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H_inv,v,I)
-
 """
     BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1}