Mercurial > repos > public > sbplib_julia
diff src/SbpOperators/volumeops/laplace/laplace.jl @ 1854:654a2b7e6824 tooling/benchmarks
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sat, 11 Jan 2025 10:19:47 +0100 |
parents | b5690ab5f0b8 |
children | f3d7e2d7a43f |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Wed May 31 08:59:34 2023 +0200 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Sat Jan 11 10:19:47 2025 +0100 @@ -52,3 +52,76 @@ return Δ end laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) + +""" + sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning, R_tuning) + +The operators required to construct the SAT for imposing a Dirichlet +condition. `H_tuning` and `R_tuning` are used to specify the strength of the +penalty. + +See also: [`sat`](@ref), [`DirichletCondition`](@ref), [`positivity_decomposition`](@ref). +""" +function sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning = 1., R_tuning = 1.) + id = boundary(bc) + set = Δ.stencil_set + H⁻¹ = inverse_inner_product(g,set) + Hᵧ = inner_product(boundary_grid(g, id), set) + e = boundary_restriction(g, set, id) + d = normal_derivative(g, set, id) + B = positivity_decomposition(Δ, g, boundary(bc); H_tuning, R_tuning) + penalty_tensor = H⁻¹∘(d' - B*e')∘Hᵧ + return penalty_tensor, e +end + +""" + sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) + +The operators required to construct the SAT for imposing a Neumann condition. + +See also: [`sat`](@ref), [`NeumannCondition`](@ref). +""" +function sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) + id = boundary(bc) + set = Δ.stencil_set + H⁻¹ = inverse_inner_product(g,set) + Hᵧ = inner_product(boundary_grid(g, id), set) + e = boundary_restriction(g, set, id) + d = normal_derivative(g, set, id) + + penalty_tensor = -H⁻¹∘e'∘Hᵧ + return penalty_tensor, d +end + +""" + positivity_decomposition(Δ::Laplace, g::Grid, b::BoundaryIdentifier; H_tuning, R_tuning) + +Constructs the scalar `B` such that `d' - 1/2*B*e'` is symmetric positive +definite with respect to the boundary quadrature. Here `d` is the normal +derivative and `e` is the boundary restriction operator. `B` can then be used +to form a symmetric and energy stable penalty for a Dirichlet condition. The +parameters `H_tuning` and `R_tuning` are used to specify the strength of the +penalty and must be greater than 1. For details we refer to +<https://doi.org/10.1016/j.jcp.2020.109294> +""" +function positivity_decomposition(Δ::Laplace, g::Grid, b::BoundaryIdentifier; H_tuning, R_tuning) + @assert(H_tuning ≥ 1.) + @assert(R_tuning ≥ 1.) + Nτ_H, τ_R = positivity_limits(Δ,g,b) + return H_tuning*Nτ_H + R_tuning*τ_R +end + +function positivity_limits(Δ::Laplace, g::EquidistantGrid, b::BoundaryIdentifier) + h = spacing(g) + θ_H = parse_scalar(Δ.stencil_set["H"]["closure"][1]) + θ_R = parse_scalar(Δ.stencil_set["D2"]["positivity"]["theta_R"]) + + τ_H = one(eltype(Δ))/(h*θ_H) + τ_R = one(eltype(Δ))/(h*θ_R) + return τ_H, τ_R +end + +function positivity_limits(Δ::Laplace, g::TensorGrid, b::BoundaryIdentifier) + τ_H, τ_R = positivity_limits(Δ, g.grids[grid_id(b)], b) + return τ_H*ndims(g), τ_R +end