Mercurial > repos > public > sbplib_julia
diff SbpOperators/src/InverseQuadrature.jl @ 304:5645021683d3
Merge
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 09 Sep 2020 20:41:31 +0200 |
parents | 6fa2ba769ae3 |
children | bd09d67ebb22 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SbpOperators/src/InverseQuadrature.jl Wed Sep 09 20:41:31 2020 +0200 @@ -0,0 +1,75 @@ +""" + Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the inverse quadrature operator `Qi` of Dim dimension as a TensorOperator +The multi-dimensional tensor operator consists of a tuple of 1D InverseDiagonalNorm +tensor operators. +""" +struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} + Hi::NTuple{Dim,InverseDiagonalNorm{T,N,M}} +end +export Quadrature + +LazyTensors.domain_size(Qi::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size + +function LazyTensors.apply(Qi::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} + error("not implemented") +end + +LazyTensors.apply_transpose(Qi::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I) + +@inline function LazyTensors.apply(Qi::Quadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T + @inbounds q = apply(Qi.Hi[1], v , I[1]) + return q +end + +@inline function LazyTensors.apply(Qi::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T + # Quadrature in x direction + @inbounds vx = view(v, :, Int(I[2])) + @inbounds qx_inv = apply(Qi.Hi[1], vx , I[1]) + # Quadrature in y-direction + @inbounds vy = view(v, Int(I[1]), :) + @inbounds qy_inv = apply(Qi.Hi[2], vy, I[2]) + return qx_inv*qy_inv +end + +""" + Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the quadrature operator `Hi` of Dim dimension as a TensorMapping +""" +struct InverseDiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1} + h_inv::T # The reciprocl grid spacing could be included in the stencil already. Preferable? + closure::NTuple{M,T} + #TODO: Write a nice constructor +end + +@inline function LazyTensors.apply(Hi::InverseDiagonalNorm{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T + return @inbounds apply(Hi, v, I[1]) +end + +LazyTensors.apply_transpose(Hi::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(Hi,v,I) + +@inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, i::Index{Lower}) where T + return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)] +end +@inline LazyTensors.apply(Hi::InverseDiagonalNorm,v::AbstractVector{T}, i::Index{Upper}) where T + N = length(v); + return @inbounds Hi.h_inv*Hi.closure[N-Int(i)+1]v[Int(i)] +end + +@inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, i::Index{Interior}) where T + return @inbounds Hi.h_inv*v[Int(i)] +end + +function LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T + N = length(v); + r = getregion(Int(index), closuresize(Hi), N) + i = Index(Int(index), r) + return LazyTensors.apply(Hi, v, i) +end +export LazyTensors.apply + +function closuresize(Hi::InverseDiagonalNorm{T<:Real,N,M}) where {T,N,M} + return M +end