Mercurial > repos > public > sbplib_julia
diff test/testSbpOperators.jl @ 513:547639572208 feature/boundary_ops
Get some kind of tested working implementation.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 23 Nov 2020 20:22:14 +0100 |
parents | 3cecbfb3d623 |
children | 14e722e8607d |
line wrap: on
line diff
--- a/test/testSbpOperators.jl Mon Nov 23 13:11:19 2020 +0100 +++ b/test/testSbpOperators.jl Mon Nov 23 20:22:14 2020 +0100 @@ -172,67 +172,92 @@ @test_broken Qinv*(Q*v) ≈ v @test Qinv*v == Qinv'*v end -# -# @testset "BoundaryValue" begin -# op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") -# g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) -# -# e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) -# e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) -# e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) -# e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) -# -# v = zeros(Float64, 4, 5) -# v[:,5] = [1, 2, 3,4] -# v[:,4] = [1, 2, 3,4] -# v[:,3] = [4, 5, 6, 7] -# v[:,2] = [7, 8, 9, 10] -# v[:,1] = [10, 11, 12, 13] -# -# @test e_w isa TensorMapping{T,2,1} where T -# @test e_w' isa TensorMapping{T,1,2} where T -# -# @test domain_size(e_w, (3,2)) == (2,) -# @test domain_size(e_e, (3,2)) == (2,) -# @test domain_size(e_s, (3,2)) == (3,) -# @test domain_size(e_n, (3,2)) == (3,) -# -# @test size(e_w'*v) == (5,) -# @test size(e_e'*v) == (5,) -# @test size(e_s'*v) == (4,) -# @test size(e_n'*v) == (4,) -# -# @test e_w'*v == [10,7,4,1.0,1] -# @test e_e'*v == [13,10,7,4,4.0] -# @test e_s'*v == [10,11,12,13.0] -# @test e_n'*v == [1,2,3,4.0] -# -# g_x = [1,2,3,4.0] -# g_y = [5,4,3,2,1.0] -# -# G_w = zeros(Float64, (4,5)) -# G_w[1,:] = g_y -# -# G_e = zeros(Float64, (4,5)) -# G_e[4,:] = g_y -# -# G_s = zeros(Float64, (4,5)) -# G_s[:,1] = g_x -# -# G_n = zeros(Float64, (4,5)) -# G_n[:,5] = g_x -# -# @test size(e_w*g_y) == (UnknownDim,5) -# @test size(e_e*g_y) == (UnknownDim,5) -# @test size(e_s*g_x) == (4,UnknownDim) -# @test size(e_n*g_x) == (4,UnknownDim) -# -# # These tests should be moved to where they are possible (i.e we know what the grid should be) -# @test_broken e_w*g_y == G_w -# @test_broken e_e*g_y == G_e -# @test_broken e_s*g_x == G_s -# @test_broken e_n*g_x == G_n -# end + +@testset "BoundaryRestrictrion" begin + op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + + g = EquidistantGrid(4, 0.0, 1.0) + + e_l = BoundaryRestriction(g,op.eClosure,Lower()) + e_r = BoundaryRestriction(g,op.eClosure,Upper()) + + v = evalOn(g,x->1+x^2) + u = [3.124] #How to handle scalars having to be arrays? It's kind of ugly. + + e_l*v isa LazyTensorMappingApplication + @test (e_l*v)[Index{Lower}(1)] == v[1] + @test (e_r*v)[Index{Upper}(4)] == v[end] + @test e_l'*u == [u[1], 0, 0, 0] + @test e_r'*u == [0, 0, 0, u[1]] + @test_throws BoundsError (e_l*v)[Index{Lower}(3)] + @test_throws BoundsError (e_r*v)[Index{Upper}(3)] + + + + + + g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) + + e_w = boundary_restriction(g, op.eClosure, CartesianBoundary{1,Lower}()) + e_e = boundary_restriction(g, op.eClosure, CartesianBoundary{1,Upper}()) + e_s = boundary_restriction(g, op.eClosure, CartesianBoundary{2,Lower}()) + e_n = boundary_restriction(g, op.eClosure, CartesianBoundary{2,Upper}()) + + v = zeros(Float64, 4, 5) + v[:,5] = [1, 2, 3,4] + v[:,4] = [1, 2, 3,4] + v[:,3] = [4, 5, 6, 7] + v[:,2] = [7, 8, 9, 10] + v[:,1] = [10, 11, 12, 13] + + @test_broken e_w isa TensorMapping{T,1,2} where T + @test_broken e_w' isa TensorMapping{T,2,1} where T + + + + @test domain_size(e_w) == (4,5) + @test domain_size(e_e) == (4,5) + @test domain_size(e_s) == (4,5) + @test domain_size(e_n) == (4,5) + + @test range_size(e_w) == (1,5) + @test range_size(e_e) == (1,5) + @test range_size(e_s) == (4,1) + @test range_size(e_n) == (4,1) + + e_w*v isa LazyTensorMappingApplication + + @test_broken e_w'*v == [10,7,4,1.0,1] + @test_broken e_e'*v == [13,10,7,4,4.0] + @test_broken e_s'*v == [10,11,12,13.0] + @test_broken e_n'*v == [1,2,3,4.0] + + g_x = [1,2,3,4.0] + g_y = [5,4,3,2,1.0] + + G_w = zeros(Float64, (4,5)) + G_w[1,:] = g_y + + G_e = zeros(Float64, (4,5)) + G_e[4,:] = g_y + + G_s = zeros(Float64, (4,5)) + G_s[:,1] = g_x + + G_n = zeros(Float64, (4,5)) + G_n[:,5] = g_x + + @test_broken size(e_w*g_y) == (UnknownDim,5) + @test_broken size(e_e*g_y) == (UnknownDim,5) + @test_broken size(e_s*g_x) == (4,UnknownDim) + @test_broken size(e_n*g_x) == (4,UnknownDim) + + # These tests should be moved to where they are possible (i.e we know what the grid should be) + @test_broken e_w*g_y == G_w + @test_broken e_e*g_y == G_e + @test_broken e_s*g_x == G_s + @test_broken e_n*g_x == G_n +end # # @testset "NormalDerivative" begin # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")