comparison test/testSbpOperators.jl @ 513:547639572208 feature/boundary_ops

Get some kind of tested working implementation.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Mon, 23 Nov 2020 20:22:14 +0100
parents 3cecbfb3d623
children 14e722e8607d
comparison
equal deleted inserted replaced
512:5a8cfcc0765d 513:547639572208
170 @test Qinv isa TensorMapping{T,2,2} where T 170 @test Qinv isa TensorMapping{T,2,2} where T
171 @test Qinv' isa TensorMapping{T,2,2} where T 171 @test Qinv' isa TensorMapping{T,2,2} where T
172 @test_broken Qinv*(Q*v) ≈ v 172 @test_broken Qinv*(Q*v) ≈ v
173 @test Qinv*v == Qinv'*v 173 @test Qinv*v == Qinv'*v
174 end 174 end
175 # 175
176 # @testset "BoundaryValue" begin 176 @testset "BoundaryRestrictrion" begin
177 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") 177 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
178 # g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) 178
179 # 179 g = EquidistantGrid(4, 0.0, 1.0)
180 # e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) 180
181 # e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) 181 e_l = BoundaryRestriction(g,op.eClosure,Lower())
182 # e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) 182 e_r = BoundaryRestriction(g,op.eClosure,Upper())
183 # e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) 183
184 # 184 v = evalOn(g,x->1+x^2)
185 # v = zeros(Float64, 4, 5) 185 u = [3.124] #How to handle scalars having to be arrays? It's kind of ugly.
186 # v[:,5] = [1, 2, 3,4] 186
187 # v[:,4] = [1, 2, 3,4] 187 e_l*v isa LazyTensorMappingApplication
188 # v[:,3] = [4, 5, 6, 7] 188 @test (e_l*v)[Index{Lower}(1)] == v[1]
189 # v[:,2] = [7, 8, 9, 10] 189 @test (e_r*v)[Index{Upper}(4)] == v[end]
190 # v[:,1] = [10, 11, 12, 13] 190 @test e_l'*u == [u[1], 0, 0, 0]
191 # 191 @test e_r'*u == [0, 0, 0, u[1]]
192 # @test e_w isa TensorMapping{T,2,1} where T 192 @test_throws BoundsError (e_l*v)[Index{Lower}(3)]
193 # @test e_w' isa TensorMapping{T,1,2} where T 193 @test_throws BoundsError (e_r*v)[Index{Upper}(3)]
194 # 194
195 # @test domain_size(e_w, (3,2)) == (2,) 195
196 # @test domain_size(e_e, (3,2)) == (2,) 196
197 # @test domain_size(e_s, (3,2)) == (3,) 197
198 # @test domain_size(e_n, (3,2)) == (3,) 198
199 # 199 g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0))
200 # @test size(e_w'*v) == (5,) 200
201 # @test size(e_e'*v) == (5,) 201 e_w = boundary_restriction(g, op.eClosure, CartesianBoundary{1,Lower}())
202 # @test size(e_s'*v) == (4,) 202 e_e = boundary_restriction(g, op.eClosure, CartesianBoundary{1,Upper}())
203 # @test size(e_n'*v) == (4,) 203 e_s = boundary_restriction(g, op.eClosure, CartesianBoundary{2,Lower}())
204 # 204 e_n = boundary_restriction(g, op.eClosure, CartesianBoundary{2,Upper}())
205 # @test e_w'*v == [10,7,4,1.0,1] 205
206 # @test e_e'*v == [13,10,7,4,4.0] 206 v = zeros(Float64, 4, 5)
207 # @test e_s'*v == [10,11,12,13.0] 207 v[:,5] = [1, 2, 3,4]
208 # @test e_n'*v == [1,2,3,4.0] 208 v[:,4] = [1, 2, 3,4]
209 # 209 v[:,3] = [4, 5, 6, 7]
210 # g_x = [1,2,3,4.0] 210 v[:,2] = [7, 8, 9, 10]
211 # g_y = [5,4,3,2,1.0] 211 v[:,1] = [10, 11, 12, 13]
212 # 212
213 # G_w = zeros(Float64, (4,5)) 213 @test_broken e_w isa TensorMapping{T,1,2} where T
214 # G_w[1,:] = g_y 214 @test_broken e_w' isa TensorMapping{T,2,1} where T
215 # 215
216 # G_e = zeros(Float64, (4,5)) 216
217 # G_e[4,:] = g_y 217
218 # 218 @test domain_size(e_w) == (4,5)
219 # G_s = zeros(Float64, (4,5)) 219 @test domain_size(e_e) == (4,5)
220 # G_s[:,1] = g_x 220 @test domain_size(e_s) == (4,5)
221 # 221 @test domain_size(e_n) == (4,5)
222 # G_n = zeros(Float64, (4,5)) 222
223 # G_n[:,5] = g_x 223 @test range_size(e_w) == (1,5)
224 # 224 @test range_size(e_e) == (1,5)
225 # @test size(e_w*g_y) == (UnknownDim,5) 225 @test range_size(e_s) == (4,1)
226 # @test size(e_e*g_y) == (UnknownDim,5) 226 @test range_size(e_n) == (4,1)
227 # @test size(e_s*g_x) == (4,UnknownDim) 227
228 # @test size(e_n*g_x) == (4,UnknownDim) 228 e_w*v isa LazyTensorMappingApplication
229 # 229
230 # # These tests should be moved to where they are possible (i.e we know what the grid should be) 230 @test_broken e_w'*v == [10,7,4,1.0,1]
231 # @test_broken e_w*g_y == G_w 231 @test_broken e_e'*v == [13,10,7,4,4.0]
232 # @test_broken e_e*g_y == G_e 232 @test_broken e_s'*v == [10,11,12,13.0]
233 # @test_broken e_s*g_x == G_s 233 @test_broken e_n'*v == [1,2,3,4.0]
234 # @test_broken e_n*g_x == G_n 234
235 # end 235 g_x = [1,2,3,4.0]
236 g_y = [5,4,3,2,1.0]
237
238 G_w = zeros(Float64, (4,5))
239 G_w[1,:] = g_y
240
241 G_e = zeros(Float64, (4,5))
242 G_e[4,:] = g_y
243
244 G_s = zeros(Float64, (4,5))
245 G_s[:,1] = g_x
246
247 G_n = zeros(Float64, (4,5))
248 G_n[:,5] = g_x
249
250 @test_broken size(e_w*g_y) == (UnknownDim,5)
251 @test_broken size(e_e*g_y) == (UnknownDim,5)
252 @test_broken size(e_s*g_x) == (4,UnknownDim)
253 @test_broken size(e_n*g_x) == (4,UnknownDim)
254
255 # These tests should be moved to where they are possible (i.e we know what the grid should be)
256 @test_broken e_w*g_y == G_w
257 @test_broken e_e*g_y == G_e
258 @test_broken e_s*g_x == G_s
259 @test_broken e_n*g_x == G_n
260 end
236 # 261 #
237 # @testset "NormalDerivative" begin 262 # @testset "NormalDerivative" begin
238 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") 263 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
239 # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) 264 # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0))
240 # 265 #