Mercurial > repos > public > sbplib_julia
diff test/LazyTensors/lazy_tensor_operations_test.jl @ 1023:52f07c77299d refactor/sbpoperators/inflation
Merge refactor/lazy_tensors
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 21 Mar 2022 09:51:07 +0100 |
parents | bbbc31953367 56fe037641ef |
children | 5be17f647018 |
line wrap: on
line diff
--- a/test/LazyTensors/lazy_tensor_operations_test.jl Fri Mar 18 16:57:00 2022 +0100 +++ b/test/LazyTensors/lazy_tensor_operations_test.jl Mon Mar 21 09:51:07 2022 +0100 @@ -4,17 +4,28 @@ using Tullio -@testset "Mapping transpose" begin - struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end +struct DummyMapping{T,R,D} <: LazyTensor{T,R,D} end - LazyTensors.apply(m::DummyMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = :apply - LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Any,D}) where {T,R,D} = :apply_transpose +LazyTensors.apply(m::DummyMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = :apply +LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Any,D}) where {T,R,D} = :apply_transpose + +LazyTensors.range_size(m::DummyMapping) = :range_size +LazyTensors.domain_size(m::DummyMapping) = :domain_size + - LazyTensors.range_size(m::DummyMapping) = :range_size - LazyTensors.domain_size(m::DummyMapping) = :domain_size +struct SizeDoublingMapping{T,R,D} <: LazyTensor{T,R,D} + domain_size::NTuple{D,Int} +end +LazyTensors.apply(m::SizeDoublingMapping{T,R}, v, i::Vararg{Any,R}) where {T,R} = (:apply,v,i) +LazyTensors.range_size(m::SizeDoublingMapping) = 2 .* m.domain_size +LazyTensors.domain_size(m::SizeDoublingMapping) = m.domain_size + + + +@testset "Mapping transpose" begin m = DummyMapping{Float64,2,3}() - @test m' isa TensorMapping{Float64, 3,2} + @test m' isa LazyTensor{Float64, 3,2} @test m'' == m @test apply(m',zeros(Float64,(0,0)), 0, 0, 0) == :apply_transpose @test apply(m'',zeros(Float64,(0,0,0)), 0, 0) == :apply @@ -24,91 +35,91 @@ @test domain_size(m') == :range_size end -@testset "TensorApplication" begin - struct SizeDoublingMapping{T,R,D} <: TensorMapping{T,R,D} - domain_size::NTuple{D,Int} - end - LazyTensors.apply(m::SizeDoublingMapping{T,R}, v, i::Vararg{Any,R}) where {T,R} = (:apply,v,i) - LazyTensors.range_size(m::SizeDoublingMapping) = 2 .* m.domain_size - LazyTensors.domain_size(m::SizeDoublingMapping) = m.domain_size - - +@testset "LazyTensorApplication" begin m = SizeDoublingMapping{Int, 1, 1}((3,)) + mm = SizeDoublingMapping{Int, 1, 1}((6,)) v = [0,1,2] @test size(m*v) == 2 .*size(v) - @test (m*v)[0] == (:apply,v,(0,)) - @test (m*m*v)[1] == (:apply,m*v,(1,)) - @test (m*m*v)[3] == (:apply,m*v,(3,)) - @test (m*m*v)[6] == (:apply,m*v,(6,)) - @test_broken BoundsError == (m*m*v)[0] - @test_broken BoundsError == (m*m*v)[7] + @test (m*v)[1] == (:apply,v,(1,)) + @test (mm*m*v)[1] == (:apply,m*v,(1,)) + @test (mm*m*v)[3] == (:apply,m*v,(3,)) + @test (mm*m*v)[6] == (:apply,m*v,(6,)) @test_throws MethodError m*m @test (m*v)[CartesianIndex(2)] == (:apply,v,(2,)) - @test (m*m*v)[CartesianIndex(2)] == (:apply,m*v,(2,)) - - m = SizeDoublingMapping{Int, 2, 1}((3,)) - @test_throws MethodError m*ones(Int,2,2) - @test_throws MethodError m*m*v + @test (mm*m*v)[CartesianIndex(2)] == (:apply,m*v,(2,)) m = SizeDoublingMapping{Float64, 2, 2}((3,3)) + mm = SizeDoublingMapping{Float64, 2, 2}((6,6)) v = ones(3,3) @test size(m*v) == 2 .*size(v) @test (m*v)[1,2] == (:apply,v,(1,2)) @test (m*v)[CartesianIndex(2,3)] == (:apply,v,(2,3)) - @test (m*m*v)[CartesianIndex(4,3)] == (:apply,m*v,(4,3)) + @test (mm*m*v)[CartesianIndex(4,3)] == (:apply,m*v,(4,3)) - struct ScalingOperator{T,D} <: TensorMapping{T,D,D} - λ::T - size::NTuple{D,Int} - end - - LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] - LazyTensors.range_size(m::ScalingOperator) = m.size - LazyTensors.domain_size(m::ScalingOperator) = m.size - - m = ScalingOperator{Int,1}(2,(3,)) + m = ScalingTensor(2,(3,)) v = [1,2,3] @test m*v isa AbstractVector @test m*v == [2,4,6] - m = ScalingOperator{Int,2}(2,(2,2)) + m = ScalingTensor(2,(2,2)) v = [[1 2];[3 4]] @test m*v == [[2 4];[6 8]] @test (m*v)[2,1] == 6 + @testset "Error on index out of bounds" begin + m = SizeDoublingMapping{Int, 1, 1}((3,)) + v = [0,1,2] + + @test_throws BoundsError (m*v)[0] + @test_throws BoundsError (m*v)[7] + end + + @testset "Error on unmatched dimensions" begin + v = [0,1,2] + m = SizeDoublingMapping{Int, 2, 1}((3,)) + @test_throws MethodError m*ones(Int,2,2) + @test_throws MethodError m*m*v + end + + @testset "Error on unmatched sizes" begin + @test_throws DomainSizeMismatch ScalingTensor(2,(2,))*ones(3) + @test_throws DomainSizeMismatch ScalingTensor(2,(2,))*ScalingTensor(2,(3,))*ones(3) + end + + @testset "Type calculation" begin - m = ScalingOperator{Int,1}(2,(3,)) + m = ScalingTensor(2,(3,)) v = [1.,2.,3.] @test m*v isa AbstractVector{Float64} @test m*v == [2.,4.,6.] @inferred m*v @inferred (m*v)[1] - m = ScalingOperator{Int,2}(2,(2,2)) + m = ScalingTensor(2,(2,2)) v = [[1. 2.];[3. 4.]] @test m*v == [[2. 4.];[6. 8.]] @test (m*v)[2,1] == 6. @inferred m*v @inferred (m*v)[1] - m = ScalingOperator{ComplexF64,1}(2. +2. *im,(3,)) + m = ScalingTensor(2. +2. *im,(3,)) v = [1.,2.,3.] @test m*v isa AbstractVector{ComplexF64} @test m*v == [2. + 2. *im, 4. + 4. *im, 6. + 6. *im] @inferred m*v @inferred (m*v)[1] - m = ScalingOperator{ComplexF64,1}(1,(3,)) + m = ScalingTensor(1,(3,)) v = [2. + 2. *im, 4. + 4. *im, 6. + 6. *im] @test m*v isa AbstractVector{ComplexF64} @test m*v == [2. + 2. *im, 4. + 4. *im, 6. + 6. *im] @inferred m*v @inferred (m*v)[1] - m = ScalingOperator{Float64,1}(2., (3,)) + m = ScalingTensor(2., (3,)) v = [[1,2,3], [3,2,1],[1,3,1]] @test m*v isa AbstractVector{Vector{Float64}} @test m*v == [[2.,4.,6.], [6.,4.,2.],[2.,6.,2.]] @@ -117,19 +128,10 @@ end end -@testset "TensorMapping binary operations" begin - struct ScalarMapping{T,R,D} <: TensorMapping{T,R,D} - λ::T - range_size::NTuple{R,Int} - domain_size::NTuple{D,Int} - end - LazyTensors.apply(m::ScalarMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = m.λ*v[I...] - LazyTensors.range_size(m::ScalarMapping) = m.domain_size - LazyTensors.domain_size(m::ScalarMapping) = m.range_size - - A = ScalarMapping{Float64,1,1}(2.0, (3,), (3,)) - B = ScalarMapping{Float64,1,1}(3.0, (3,), (3,)) +@testset "LazyTensor binary operations" begin + A = ScalingTensor(2.0, (3,)) + B = ScalingTensor(3.0, (3,)) v = [1.1,1.2,1.3] for i ∈ eachindex(v) @@ -140,24 +142,34 @@ @test ((A-B)*v)[i] == 2*v[i] - 3*v[i] end + @test range_size(A+B) == range_size(A) == range_size(B) @test domain_size(A+B) == domain_size(A) == domain_size(B) @test ((A+B)*ComplexF64[1.1,1.2,1.3])[3] isa ComplexF64 + + @testset "Error on unmatched sizes" begin + @test_throws Union{DomainSizeMismatch, RangeSizeMismatch} ScalingTensor(2.0, (3,)) + ScalingTensor(2.0, (4,)) + + @test_throws DomainSizeMismatch ScalingTensor(2.0, (4,)) + SizeDoublingMapping{Float64,1,1}((2,)) + @test_throws DomainSizeMismatch SizeDoublingMapping{Float64,1,1}((2,)) + ScalingTensor(2.0, (4,)) + @test_throws RangeSizeMismatch ScalingTensor(2.0, (2,)) + SizeDoublingMapping{Float64,1,1}((2,)) + @test_throws RangeSizeMismatch SizeDoublingMapping{Float64,1,1}((2,)) + ScalingTensor(2.0, (2,)) + end end -@testset "TensorMappingComposition" begin +@testset "LazyTensorComposition" begin A = rand(2,3) B = rand(3,4) à = LazyLinearMap(A, (1,), (2,)) B̃ = LazyLinearMap(B, (1,), (2,)) - @test Ã∘B̃ isa TensorMappingComposition + @test Ã∘B̃ isa LazyTensorComposition @test range_size(Ã∘B̃) == (2,) @test domain_size(Ã∘B̃) == (4,) - @test_throws SizeMismatch B̃∘à + @test_throws DomainSizeMismatch B̃∘à # @test @inbounds B̃∘à # Should not error even though dimensions don't match. (Since ]test runs with forced boundschecking this is currently not testable 2020-10-16) @@ -171,100 +183,9 @@ @test ((Ã∘B̃)'*ComplexF64[1.,2.])[1] isa ComplexF64 end -@testset "LazyLinearMap" begin - # Test a standard matrix-vector product - # mapping vectors of size 4 to vectors of size 3. - A = rand(3,4) - à = LazyLinearMap(A, (1,), (2,)) - v = rand(4) - w = rand(3) - @test à isa LazyLinearMap{T,1,1} where T - @test à isa TensorMapping{T,1,1} where T - @test range_size(Ã) == (3,) - @test domain_size(Ã) == (4,) - - @test Ã*ones(4) ≈ A*ones(4) atol=5e-13 - @test Ã*v ≈ A*v atol=5e-13 - @test Ã'*w ≈ A'*w - - A = rand(2,3,4) - @test_throws DomainError LazyLinearMap(A, (3,1), (2,)) - - # Test more exotic mappings - B = rand(3,4,2) - # Map vectors of size 2 to matrices of size (3,4) - B̃ = LazyLinearMap(B, (1,2), (3,)) - v = rand(2) - - @test range_size(B̃) == (3,4) - @test domain_size(B̃) == (2,) - @test B̃ isa TensorMapping{T,2,1} where T - @test B̃*ones(2) ≈ B[:,:,1] + B[:,:,2] atol=5e-13 - @test B̃*v ≈ B[:,:,1]*v[1] + B[:,:,2]*v[2] atol=5e-13 - - # Map matrices of size (3,2) to vectors of size 4 - B̃ = LazyLinearMap(B, (2,), (1,3)) - v = rand(3,2) - - @test range_size(B̃) == (4,) - @test domain_size(B̃) == (3,2) - @test B̃ isa TensorMapping{T,1,2} where T - @test B̃*ones(3,2) ≈ B[1,:,1] + B[2,:,1] + B[3,:,1] + - B[1,:,2] + B[2,:,2] + B[3,:,2] atol=5e-13 - @test B̃*v ≈ B[1,:,1]*v[1,1] + B[2,:,1]*v[2,1] + B[3,:,1]*v[3,1] + - B[1,:,2]v[1,2] + B[2,:,2]*v[2,2] + B[3,:,2]*v[3,2] atol=5e-13 - - - # TODO: - # @inferred (B̃*v)[2] -end - - -@testset "IdentityMapping" begin - @test IdentityMapping{Float64}((4,5)) isa IdentityMapping{T,2} where T - @test IdentityMapping{Float64}((4,5)) isa TensorMapping{T,2,2} where T - @test IdentityMapping{Float64}((4,5)) == IdentityMapping{Float64}(4,5) - - @test IdentityMapping(3,2) isa IdentityMapping{Float64,2} - - for sz ∈ [(4,5),(3,),(5,6,4)] - I = IdentityMapping{Float64}(sz) - v = rand(sz...) - @test I*v == v - @test I'*v == v - - v = rand(ComplexF64,sz...) - @test I*v == v - @test I'*v == v - - @test range_size(I) == sz - @test domain_size(I) == sz - end - - I = IdentityMapping{Float64}((4,5)) - v = rand(4,5) - @inferred (I*v)[3,2] - @inferred (I'*v)[3,2] - @inferred range_size(I) - - @inferred range_dim(I) - @inferred domain_dim(I) - - à = rand(4,2) - A = LazyLinearMap(Ã,(1,),(2,)) - I1 = IdentityMapping{Float64}(2) - I2 = IdentityMapping{Float64}(4) - @test A∘I1 == A - @test I2∘A == A - @test I1∘I1 == I1 - @test_throws SizeMismatch I1∘A - @test_throws SizeMismatch A∘I2 - @test_throws SizeMismatch I1∘I2 -end - -@testset "InflatedTensorMapping" begin - I(sz...) = IdentityMapping(sz...) +@testset "InflatedLazyTensor" begin + I(sz...) = IdentityTensor(sz...) à = rand(4,2) B̃ = rand(4,2,3) @@ -275,99 +196,89 @@ C = LazyLinearMap(C̃,(1,),(2,3)) @testset "Constructors" begin - @test InflatedTensorMapping(I(3,2), A, I(4)) isa TensorMapping{Float64, 4, 4} - @test InflatedTensorMapping(I(3,2), B, I(4)) isa TensorMapping{Float64, 5, 4} - @test InflatedTensorMapping(I(3), C, I(2,3)) isa TensorMapping{Float64, 4, 5} - @test InflatedTensorMapping(C, I(2,3)) isa TensorMapping{Float64, 3, 4} - @test InflatedTensorMapping(I(3), C) isa TensorMapping{Float64, 2, 3} - @test InflatedTensorMapping(I(3), I(2,3)) isa TensorMapping{Float64, 3, 3} + @test InflatedLazyTensor(I(3,2), A, I(4)) isa LazyTensor{Float64, 4, 4} + @test InflatedLazyTensor(I(3,2), B, I(4)) isa LazyTensor{Float64, 5, 4} + @test InflatedLazyTensor(I(3), C, I(2,3)) isa LazyTensor{Float64, 4, 5} + @test InflatedLazyTensor(C, I(2,3)) isa LazyTensor{Float64, 3, 4} + @test InflatedLazyTensor(I(3), C) isa LazyTensor{Float64, 2, 3} + @test InflatedLazyTensor(I(3), I(2,3)) isa LazyTensor{Float64, 3, 3} end @testset "Range and domain size" begin - @test range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) - @test domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) + @test range_size(InflatedLazyTensor(I(3,2), A, I(4))) == (3,2,4,4) + @test domain_size(InflatedLazyTensor(I(3,2), A, I(4))) == (3,2,2,4) - @test range_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,4,2,4) - @test domain_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,3,4) + @test range_size(InflatedLazyTensor(I(3,2), B, I(4))) == (3,2,4,2,4) + @test domain_size(InflatedLazyTensor(I(3,2), B, I(4))) == (3,2,3,4) - @test range_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,4,2,3) - @test domain_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,2,3,2,3) + @test range_size(InflatedLazyTensor(I(3), C, I(2,3))) == (3,4,2,3) + @test domain_size(InflatedLazyTensor(I(3), C, I(2,3))) == (3,2,3,2,3) - @inferred range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) - @inferred domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) + @inferred range_size(InflatedLazyTensor(I(3,2), A, I(4))) == (3,2,4,4) + @inferred domain_size(InflatedLazyTensor(I(3,2), A, I(4))) == (3,2,2,4) end @testset "Application" begin # Testing regular application and transposed application with inflation "before", "after" and "before and after". # The inflated tensor mappings are chosen to preserve, reduce and increase the dimension of the result compared to the input. - tests = [ + cases = [ ( - InflatedTensorMapping(I(3,2), A, I(4)), + InflatedLazyTensor(I(3,2), A, I(4)), (v-> @tullio res[a,b,c,d] := Ã[c,i]*v[a,b,i,d]), # Expected result of apply (v-> @tullio res[a,b,c,d] := Ã[i,c]*v[a,b,i,d]), # Expected result of apply_transpose ), ( - InflatedTensorMapping(I(3,2), B, I(4)), + InflatedLazyTensor(I(3,2), B, I(4)), (v-> @tullio res[a,b,c,d,e] := B̃[c,d,i]*v[a,b,i,e]), (v-> @tullio res[a,b,c,d] := B̃[i,j,c]*v[a,b,i,j,d]), ), ( - InflatedTensorMapping(I(3,2), C, I(4)), + InflatedLazyTensor(I(3,2), C, I(4)), (v-> @tullio res[a,b,c,d] := C̃[c,i,j]*v[a,b,i,j,d]), (v-> @tullio res[a,b,c,d,e] := C̃[i,c,d]*v[a,b,i,e]), ), ( - InflatedTensorMapping(I(3,2), A), + InflatedLazyTensor(I(3,2), A), (v-> @tullio res[a,b,c] := Ã[c,i]*v[a,b,i]), (v-> @tullio res[a,b,c] := Ã[i,c]*v[a,b,i]), ), ( - InflatedTensorMapping(I(3,2), B), + InflatedLazyTensor(I(3,2), B), (v-> @tullio res[a,b,c,d] := B̃[c,d,i]*v[a,b,i]), (v-> @tullio res[a,b,c] := B̃[i,j,c]*v[a,b,i,j]), ), ( - InflatedTensorMapping(I(3,2), C), + InflatedLazyTensor(I(3,2), C), (v-> @tullio res[a,b,c] := C̃[c,i,j]*v[a,b,i,j]), (v-> @tullio res[a,b,c,d] := C̃[i,c,d]*v[a,b,i]), ), ( - InflatedTensorMapping(A,I(4)), + InflatedLazyTensor(A,I(4)), (v-> @tullio res[a,b] := Ã[a,i]*v[i,b]), (v-> @tullio res[a,b] := Ã[i,a]*v[i,b]), ), ( - InflatedTensorMapping(B,I(4)), + InflatedLazyTensor(B,I(4)), (v-> @tullio res[a,b,c] := B̃[a,b,i]*v[i,c]), (v-> @tullio res[a,b] := B̃[i,j,a]*v[i,j,b]), ), ( - InflatedTensorMapping(C,I(4)), + InflatedLazyTensor(C,I(4)), (v-> @tullio res[a,b] := C̃[a,i,j]*v[i,j,b]), (v-> @tullio res[a,b,c] := C̃[i,a,b]*v[i,c]), ), ] - @testset "apply" begin - for i ∈ 1:length(tests) - tm = tests[i][1] - v = rand(domain_size(tm)...) - true_value = tests[i][2](v) - @test tm*v ≈ true_value rtol=1e-14 - end - end + @testset "$tm" for (tm, true_apply, true_apply_transpose) ∈ cases + v = rand(domain_size(tm)...) + @test tm*v ≈ true_apply(v) rtol=1e-14 - @testset "apply_transpose" begin - for i ∈ 1:length(tests) - tm = tests[i][1] - v = rand(range_size(tm)...) - true_value = tests[i][3](v) - @test tm'*v ≈ true_value rtol=1e-14 - end + v = rand(range_size(tm)...) + @test tm'*v ≈ true_apply_transpose(v) rtol=1e-14 end @testset "application to other type" begin - tm = InflatedTensorMapping(I(3,2), A, I(4)) + tm = InflatedLazyTensor(I(3,2), A, I(4)) v = rand(ComplexF64, domain_size(tm)...) @test (tm*v)[1,2,3,1] isa ComplexF64 @@ -377,16 +288,7 @@ end @testset "Inference of application" begin - struct ScalingOperator{T,D} <: TensorMapping{T,D,D} - λ::T - size::NTuple{D,Int} - end - - LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] - LazyTensors.range_size(m::ScalingOperator) = m.size - LazyTensors.domain_size(m::ScalingOperator) = m.size - - tm = InflatedTensorMapping(I(2,3),ScalingOperator(2.0, (3,2)),I(3,4)) + tm = InflatedLazyTensor(I(2,3),ScalingTensor(2.0, (3,2)),I(3,4)) v = rand(domain_size(tm)...) @inferred apply(tm,v,1,2,3,2,2,4) @@ -394,94 +296,24 @@ end end - @testset "InflatedTensorMapping of InflatedTensorMapping" begin - A = ScalingOperator(2.0,(2,3)) - itm = InflatedTensorMapping(I(3,2), A, I(4)) - @test InflatedTensorMapping(I(4), itm, I(2)) == InflatedTensorMapping(I(4,3,2), A, I(4,2)) - @test InflatedTensorMapping(itm, I(2)) == InflatedTensorMapping(I(3,2), A, I(4,2)) - @test InflatedTensorMapping(I(4), itm) == InflatedTensorMapping(I(4,3,2), A, I(4)) + @testset "InflatedLazyTensor of InflatedLazyTensor" begin + A = ScalingTensor(2.0,(2,3)) + itm = InflatedLazyTensor(I(3,2), A, I(4)) + @test InflatedLazyTensor(I(4), itm, I(2)) == InflatedLazyTensor(I(4,3,2), A, I(4,2)) + @test InflatedLazyTensor(itm, I(2)) == InflatedLazyTensor(I(3,2), A, I(4,2)) + @test InflatedLazyTensor(I(4), itm) == InflatedLazyTensor(I(4,3,2), A, I(4)) - @test InflatedTensorMapping(I(2), I(2), I(2)) isa InflatedTensorMapping # The constructor should always return its type. + @test InflatedLazyTensor(I(2), I(2), I(2)) isa InflatedLazyTensor # The constructor should always return its type. end end -@testset "split_index" begin - @test LazyTensors.split_index(Val(2),Val(1),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,5,6),(3,4)) - @test LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,:,:,5,6),(3,4)) - @test LazyTensors.split_index(Val(3),Val(1),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,5,6),(4,)) - @test LazyTensors.split_index(Val(3),Val(2),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,:,5,6),(4,)) - @test LazyTensors.split_index(Val(1),Val(1),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,4,5,6),(2,3)) - @test LazyTensors.split_index(Val(1),Val(2),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,:,4,5,6),(2,3)) - - @test LazyTensors.split_index(Val(0),Val(1),Val(3),Val(3),1,2,3,4,5,6) == ((:,4,5,6),(1,2,3)) - @test LazyTensors.split_index(Val(3),Val(1),Val(3),Val(0),1,2,3,4,5,6) == ((1,2,3,:),(4,5,6)) - - @inferred LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,2,2,4) -end - -@testset "slice_tuple" begin - @test LazyTensors.slice_tuple((1,2,3),Val(1), Val(3)) == (1,2,3) - @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(2), Val(5)) == (2,3,4,5) - @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(1), Val(3)) == (1,2,3) - @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(4), Val(6)) == (4,5,6) -end - -@testset "split_tuple" begin - @testset "2 parts" begin - @test LazyTensors.split_tuple((),Val(0)) == ((),()) - @test LazyTensors.split_tuple((1,),Val(0)) == ((),(1,)) - @test LazyTensors.split_tuple((1,),Val(1)) == ((1,),()) - - @test LazyTensors.split_tuple((1,2,3,4),Val(0)) == ((),(1,2,3,4)) - @test LazyTensors.split_tuple((1,2,3,4),Val(1)) == ((1,),(2,3,4)) - @test LazyTensors.split_tuple((1,2,3,4),Val(2)) == ((1,2),(3,4)) - @test LazyTensors.split_tuple((1,2,3,4),Val(3)) == ((1,2,3),(4,)) - @test LazyTensors.split_tuple((1,2,3,4),Val(4)) == ((1,2,3,4),()) - - @test LazyTensors.split_tuple((1,2,true,4),Val(3)) == ((1,2,true),(4,)) - - @inferred LazyTensors.split_tuple((1,2,3,4),Val(3)) - @inferred LazyTensors.split_tuple((1,2,true,4),Val(3)) - end - - @testset "3 parts" begin - @test LazyTensors.split_tuple((),Val(0),Val(0)) == ((),(),()) - @test LazyTensors.split_tuple((1,2,3),Val(1), Val(1)) == ((1,),(2,),(3,)) - @test LazyTensors.split_tuple((1,true,3),Val(1), Val(1)) == ((1,),(true,),(3,)) - - @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(1),Val(2)) == ((1,),(2,3),(4,5,6)) - @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2)) == ((1,2,3),(4,5),(6,)) - - @inferred LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2)) - @inferred LazyTensors.split_tuple((1,true,3),Val(1), Val(1)) - end -end - -@testset "flatten_tuple" begin - @test LazyTensors.flatten_tuple((1,)) == (1,) - @test LazyTensors.flatten_tuple((1,2,3,4,5,6)) == (1,2,3,4,5,6) - @test LazyTensors.flatten_tuple((1,2,(3,4),5,6)) == (1,2,3,4,5,6) - @test LazyTensors.flatten_tuple((1,2,(3,(4,5)),6)) == (1,2,3,4,5,6) - @test LazyTensors.flatten_tuple(((1,2),(3,4),(5,),6)) == (1,2,3,4,5,6) -end - - @testset "LazyOuterProduct" begin - struct ScalingOperator{T,D} <: TensorMapping{T,D,D} - λ::T - size::NTuple{D,Int} - end - - LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] - LazyTensors.range_size(m::ScalingOperator) = m.size - LazyTensors.domain_size(m::ScalingOperator) = m.size - - A = ScalingOperator(2.0, (5,)) - B = ScalingOperator(3.0, (3,)) - C = ScalingOperator(5.0, (3,2)) + A = ScalingTensor(2.0, (5,)) + B = ScalingTensor(3.0, (3,)) + C = ScalingTensor(5.0, (3,2)) AB = LazyOuterProduct(A,B) - @test AB isa TensorMapping{T,2,2} where T + @test AB isa LazyTensor{T,2,2} where T @test range_size(AB) == (5,3) @test domain_size(AB) == (5,3) @@ -490,7 +322,7 @@ ABC = LazyOuterProduct(A,B,C) - @test ABC isa TensorMapping{T,4,4} where T + @test ABC isa LazyTensor{T,4,4} where T @test range_size(ABC) == (5,3,3,2) @test domain_size(ABC) == (5,3,3,2) @@ -515,32 +347,21 @@ @test B̃Ã*v₂ ≈ BAv @testset "Indentity mapping arguments" begin - @test LazyOuterProduct(IdentityMapping(3,2), IdentityMapping(1,2)) == IdentityMapping(3,2,1,2) + @test LazyOuterProduct(IdentityTensor(3,2), IdentityTensor(1,2)) == IdentityTensor(3,2,1,2) à = LazyLinearMap(A,(1,),(2,)) - @test LazyOuterProduct(IdentityMapping(3,2), Ã) == InflatedTensorMapping(IdentityMapping(3,2),Ã) - @test LazyOuterProduct(Ã, IdentityMapping(3,2)) == InflatedTensorMapping(Ã,IdentityMapping(3,2)) + @test LazyOuterProduct(IdentityTensor(3,2), Ã) == InflatedLazyTensor(IdentityTensor(3,2),Ã) + @test LazyOuterProduct(Ã, IdentityTensor(3,2)) == InflatedLazyTensor(Ã,IdentityTensor(3,2)) - I1 = IdentityMapping(3,2) - I2 = IdentityMapping(4) - @test I1⊗Ã⊗I2 == InflatedTensorMapping(I1, Ã, I2) + I1 = IdentityTensor(3,2) + I2 = IdentityTensor(4) + @test I1⊗Ã⊗I2 == InflatedLazyTensor(I1, Ã, I2) end - end @testset "inflate" begin - struct ScalingOperator{T,D} <: TensorMapping{T,D,D} - λ::T - size::NTuple{D,Int} - end - - LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] - LazyTensors.range_size(m::ScalingOperator) = m.size - LazyTensors.domain_size(m::ScalingOperator) = m.size - - - I = LazyTensors.inflate(IdentityMapping(),(3,4,5,6), 2) - @test I isa TensorMapping{Float64, 3,3} + I = LazyTensors.inflate(IdentityTensor(),(3,4,5,6), 2) + @test I isa LazyTensor{Float64, 3,3} @test range_size(I) == (3,5,6) @test domain_size(I) == (3,5,6)